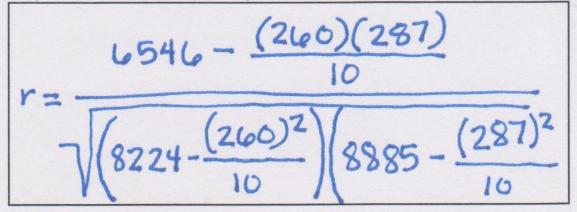
Correlations

YESTERDAY

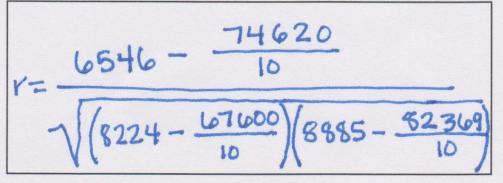
- 1. Statistics review BILL question
- 2. Article reading and BILL questions
- 3. Student guide reading about correlations (p. 41)
- 4. Examples 1-3 (p. 42)
- 5. BILL examples

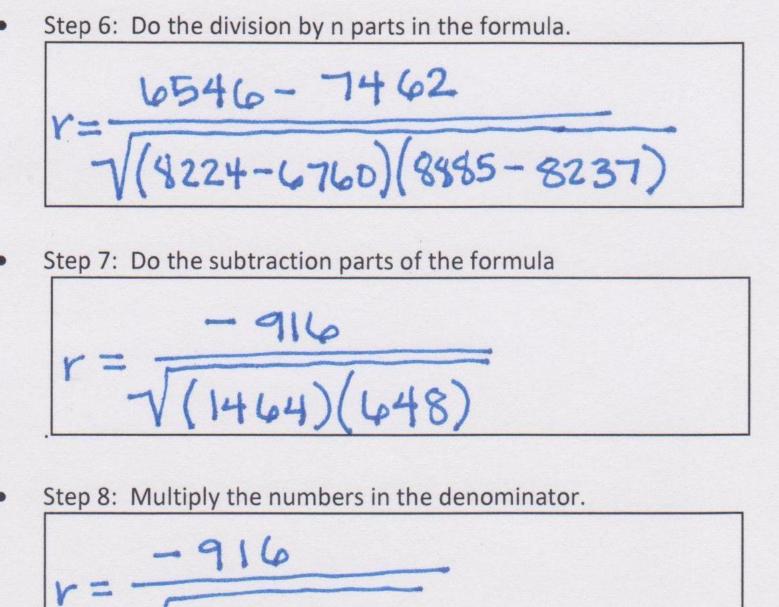
HOME FUN LAST NIGHT

1. Calculate correlation coefficient (p. 41-45)


TODAY

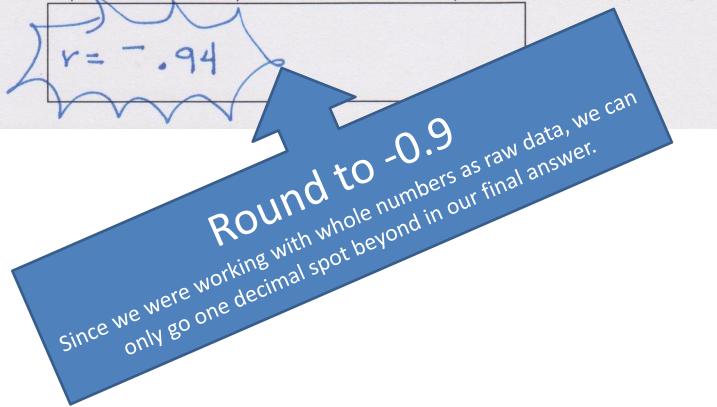
- 1. Statistical conclusions from r (p. 46-47)
- 2. Correlations and Cancer practice problem


Here's what we'll do to learn about correlations...


X	X ²	Y	Y^2	XY
5	25	45	2025	225
15	2.2.5	32	1024	480
18	324	37	1369	666
20	400	33	1089	660
25	425	24	576	600
25	625	29	841	725
30	900	26	676	780
34	1156	22	484	748
38	1444	24	516	912
50	2500	15	225	750
∑X= 260	$\sum X^2 = 8224$	∑Y= 2% 1	$\Sigma Y^2 = 8875$	$\Sigma XY = 6546$

• Step 4: Enter the numbers you have calculated in the spaces where they should go in the formula.

• Step 5: Multiply the $(\Sigma X)(\Sigma Y)$ in the numerator (the top part of the formula) and do the squaring to $(\Sigma X)^2$ and $(\Sigma Y)^2$ in the denominator (the bottom part of the formula).



• Step 9: Take the square root of the denominator.

 $r = \frac{-916}{974}$

• Step 10: Take the last step and divide the numerator by the denominator and you will get the Correlation Coefficient!

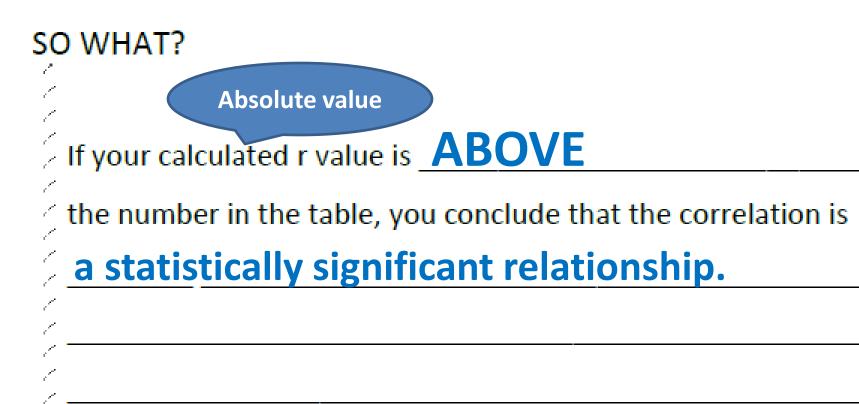
Statistical Conclusions from R *Student guide pages* 46-47

Making Statistical Inferences from Pearson's r.

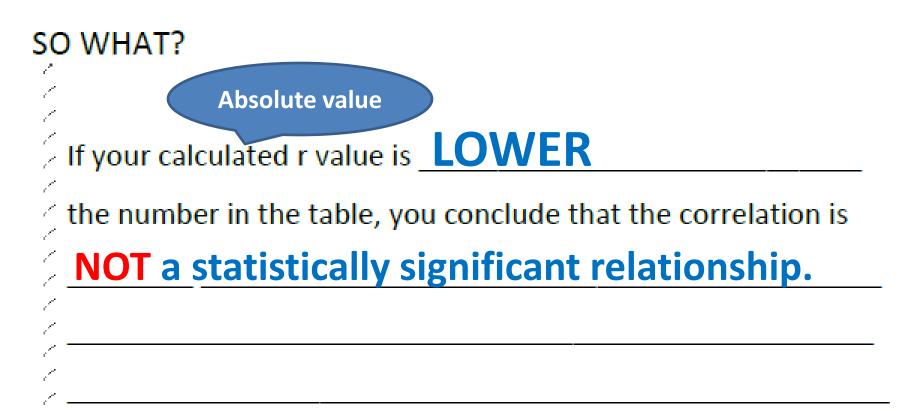
How do you determine whether or not your correlation is simply a chance occurrence or if it really is true of the population? You will need three things in order to determine whether you can infer that the relationship you found in your sample also is true (in other words, "is generalizable" in the larger population:

- 1. The Correlation Coefficient that you calculated
- 2. Something called the "degrees of freedom" which is simply the number of pairs of data in your sample minus 2.

DF = 10 pairs - 2 = 8


Statistical Conclusions from R Student guide pages 46-47 Pearson's R Critical Values

Just like the T-test, we'll always use the 0.05 level of significance


de sta	Values of <i>r</i> for the .05 and .01 Levels of Significance					
df(N-2)	.05	.01	df(N-2)	.05	.01	
1	.997	1.000	31	.344	.442	
2	.950	.990	32	.339	.436	
3	.878	.959	33	.334	.430	
4	.812	.917	34	.329	.424	
5	.755	.875	35	.325	.418	
6	.707	.834	36	.320	.413	
7	.666	.798	37	.316	.408	
8	.632	.765	38	.312	.403	
9	.602	.735	39	.308	.398	
10	.576	.708	40	.304	.393	
11	.553	.684	41	.301	.389	
12	.533	.661	42	.297	.384	

Critical r = **.632**

Statistical Conclusions from R *Student guide pages 46-47*

Statistical Conclusions from R *Student guide pages 46-47*

Just to make sure that you are getting the idea here, try a few examples.

r = .43	n = 9	degrees of freedom? 7	Significant?	No
r = . 87	n = 4	degrees of freedom? 2	Significant?	Νο
r = .83	n = 6	degrees of freedom? 4	Significant?	Yes
r = .10	n = 11	degrees of freedom? 9	Significant?	Νο
r = .72	n = 8	degrees of freedom? 6	Significant?	Yes