BIOLOGY FOR LIFE
  • Syllabus
    • Core >
      • 1: Cell Biology >
        • 1.1: Introduction to Cells
        • 1.2: Ultrastructure of Cells
        • 1.3: Membrane Structure
        • 1.4: Membrane Transport
        • 1.5: The Origin of Cells
        • 1.6: Cell Division
      • 2: Molecular Biology >
        • 2.1: Molecules to Metabolism
        • 2.2: Water
        • 2.3: Carbohydrates and Lipids
        • 2.4: Proteins
        • 2.5: Enzymes
        • 2.6: DNA and RNA
        • 2.7: DNA Replication, Transcription and Translation
        • 2.8: Cell Respiration
        • 2.9: Photosynthesis
      • 3: Genetics >
        • 3.1: Genes
        • 3.2: Chromosomes
        • 3.3: Meiosis
        • 3.4: Inheritance
        • 3.5: Genetic Modification and Biotechnology
      • 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2: Energy Flow
        • 4.3: Carbon Cycling
        • 4.4: Climate Change
      • 5: Evolution and Biodiversity >
        • 5.1: Evidence for Evolution
        • 5.2: Natural Selection
        • 5.3: Classification and Biodiversity
        • 5.4: Cladistics
      • 6: Human Physiology >
        • 6.1: Digestion and Absorption
        • 6.2: The Blood System
        • 6.3: Defense Against Infectious Disease
        • 6.4: Gas Exchange
        • 6.5: Neurons and Synapses
        • 6.6: Hormones, Homeostasis and Reproduction
    • Higher Level >
      • 7: Nucleic Acids >
        • 7.1: DNA Structure and Replication
        • 7.2: Transcription and Gene Expression
        • 7.3: Translation
      • 8: Metabolism, Cell Respiration & Photosynthesis >
        • 8.1: Metabolism
        • 8.2: Cell Respiration
        • 8.3: Photosynthesis
      • 9: Plant Biology >
        • 9.1: Transport in the Xylem of Plants
        • 9.2: Transport in the Phloem of Plants
        • 9.3: Growth in Plants
        • 9.4: Reproduction in Plants
      • 10: Genetics and Evolution >
        • 10.1: Meiosis
        • 10.2: Inheritance
        • 10.3: Gene Pools and Speciation
      • 11: Animal Physiology >
        • 11.1: Antibody Production and Vaccination
        • 11.2: Movement
        • 11.3: Kidney and Osmoregulation
        • 11.4: Sexual Reproduction
    • Options >
      • D: Human Physiology >
        • D.1: Human Nutrition
        • D.2: Digestion
        • D.3: Functions of the Liver
        • D.4: The Heart
        • D.5: Hormones and Metabolism
        • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Group 4 Project
    • External Exam
    • Internal Assessment >
      • Personal Engagement
      • Exploration
      • Analysis
      • Evaluation
      • Communication
    • Extended Essay
  • Investigation Skills
    • Lab Safety
    • Microscopy
    • Lab Drawings
    • Data Tables
    • Measurement
    • Statistics >
      • Descriptive Statistics >
        • Skew
        • Measures of Central Tendancy
        • Measures of Spread
        • Pearson Correlation
      • Inferential Statistics >
        • T-Test
        • ANOVA
        • Kruskal-Wallis
        • X2 Test for Independence
        • X2 Goodness of Fit
    • Graphing >
      • Graphing with Excel
      • Interpreting Error Bars
    • Error Analysis
  • Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • IB Bio Dance
      • Wood Duck Project
      • Invasive Crayfish Project
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes
      • Lab Practicals
    • Class Photos
    • Recommendations
    • Supplemental Reading
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Site Feedback
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
  • Summer Ecology Research

Topic 2.5:
​Enzymes

Essential Idea:  Enzymes control the metabolism of the cell.
  • Outline answer to each objective statement for topic 2.5 (coming soon)
  • Quizlet study set for this topic
At SHS, Topic 2.5 is taught in the following class unit(s):​​
  • ​Enzymes and Metabolism
2.5.U1  Enzymes have an active site to which specific substrates bind.
  • State the relationship between enzyme substrate and enzyme active site.
  • Explain the relationship between enzyme structure and enzyme specificity, including the role of the active site.​
2.5.U2  Enzyme catalysis involves molecular motion and the collision of substrates with the active site.
  • Outline the three stages of enzyme activity.
  • Explain the role of random collisions in the binding of the substrate with the enzyme active site.
  • Describe the induced fit model of enzyme action.​
2.5.U3  Temperature, pH and substrate concentration affect the rate of activity of enzymes.
  • Explain how temperature affects the rate of enzyme activity.
  • Draw a graph of depicting the effect of temperature on the rate of enzyme activity.
  • Explain how pH affects the rate of enzyme activity.
  • Draw a graph of depicting the effect of pH on the rate of enzyme activity.
  • Identify the optimum temperature or pH for enzyme activity on a graph.
  • Explain how substrate concentration affects the rate of enzyme activity.
  • Draw a graph of depicting the effect of substrate concentration on the rate of enzyme activity.​
2.5.U4  Enzymes are denatured.
  • State the effect of denaturation on enzyme structure and function.
2.5.U5  Immobilized enzymes are widely used in industry.
  • List industries that use commercially useful enzymes.
  • Explain how and why industrial enzymes are often immobilized.
2.5.A1  Methods of production of lactose-free milk and its advantages.
  • State the source of the lactase enzyme used in food processing.
  • State the reaction catalyzed by lactase.
  • Outline four reasons for using lactase in food processing.​
2.5.S1  Design of experiments to test the effect of temperature, pH, and substrate concentration on the activity of enzymes.
  • Identify and manipulated, responding and controlled variables in descriptions of experiments testing the activity of enzymes.
2.5.S2  Experimental investigation of a factor affecting enzyme activity. (Practical 3)
  • Describe three techniques for measuring the activity of an example enzyme.
2.5.NOS  Experimental design-accurate, quantitative measurements in enzyme experiments require replicates to ensure reliability.
  • Define quantitative and qualitative.
  • Determine measurement uncertainty of a measurement tool.
  • Explain the need for repeated measurements (multiple trials) in experimental design.
  • Explain the need to controlled variables in experimental design.
I give many of my IB Biology resources away, for the benefit of students and teachers around the world. 
If you've found the materials helpful, please consider making a contribution of any amount
to 
this Earthwatch Expedition Fund. 

​Did I forget something?  Know of a mistake? Have a suggestion?  Let me know by emailing me here.

Before using any of the files available on this site,
​please familiarize yourself with the 
Creative Commons Attribution License. 
​​​It prohibits the use of any material on this site for commercial  purposes of any kind.  ​


"When we try to pick out anything by itself, we find it hitched to everything else in the Universe." 
 John Muir,   1911
  • Syllabus
    • Core >
      • 1: Cell Biology >
        • 1.1: Introduction to Cells
        • 1.2: Ultrastructure of Cells
        • 1.3: Membrane Structure
        • 1.4: Membrane Transport
        • 1.5: The Origin of Cells
        • 1.6: Cell Division
      • 2: Molecular Biology >
        • 2.1: Molecules to Metabolism
        • 2.2: Water
        • 2.3: Carbohydrates and Lipids
        • 2.4: Proteins
        • 2.5: Enzymes
        • 2.6: DNA and RNA
        • 2.7: DNA Replication, Transcription and Translation
        • 2.8: Cell Respiration
        • 2.9: Photosynthesis
      • 3: Genetics >
        • 3.1: Genes
        • 3.2: Chromosomes
        • 3.3: Meiosis
        • 3.4: Inheritance
        • 3.5: Genetic Modification and Biotechnology
      • 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2: Energy Flow
        • 4.3: Carbon Cycling
        • 4.4: Climate Change
      • 5: Evolution and Biodiversity >
        • 5.1: Evidence for Evolution
        • 5.2: Natural Selection
        • 5.3: Classification and Biodiversity
        • 5.4: Cladistics
      • 6: Human Physiology >
        • 6.1: Digestion and Absorption
        • 6.2: The Blood System
        • 6.3: Defense Against Infectious Disease
        • 6.4: Gas Exchange
        • 6.5: Neurons and Synapses
        • 6.6: Hormones, Homeostasis and Reproduction
    • Higher Level >
      • 7: Nucleic Acids >
        • 7.1: DNA Structure and Replication
        • 7.2: Transcription and Gene Expression
        • 7.3: Translation
      • 8: Metabolism, Cell Respiration & Photosynthesis >
        • 8.1: Metabolism
        • 8.2: Cell Respiration
        • 8.3: Photosynthesis
      • 9: Plant Biology >
        • 9.1: Transport in the Xylem of Plants
        • 9.2: Transport in the Phloem of Plants
        • 9.3: Growth in Plants
        • 9.4: Reproduction in Plants
      • 10: Genetics and Evolution >
        • 10.1: Meiosis
        • 10.2: Inheritance
        • 10.3: Gene Pools and Speciation
      • 11: Animal Physiology >
        • 11.1: Antibody Production and Vaccination
        • 11.2: Movement
        • 11.3: Kidney and Osmoregulation
        • 11.4: Sexual Reproduction
    • Options >
      • D: Human Physiology >
        • D.1: Human Nutrition
        • D.2: Digestion
        • D.3: Functions of the Liver
        • D.4: The Heart
        • D.5: Hormones and Metabolism
        • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Group 4 Project
    • External Exam
    • Internal Assessment >
      • Personal Engagement
      • Exploration
      • Analysis
      • Evaluation
      • Communication
    • Extended Essay
  • Investigation Skills
    • Lab Safety
    • Microscopy
    • Lab Drawings
    • Data Tables
    • Measurement
    • Statistics >
      • Descriptive Statistics >
        • Skew
        • Measures of Central Tendancy
        • Measures of Spread
        • Pearson Correlation
      • Inferential Statistics >
        • T-Test
        • ANOVA
        • Kruskal-Wallis
        • X2 Test for Independence
        • X2 Goodness of Fit
    • Graphing >
      • Graphing with Excel
      • Interpreting Error Bars
    • Error Analysis
  • Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • IB Bio Dance
      • Wood Duck Project
      • Invasive Crayfish Project
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes
      • Lab Practicals
    • Class Photos
    • Recommendations
    • Supplemental Reading
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Site Feedback
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
  • Summer Ecology Research