BIOLOGY FOR LIFE
⭐IB Bio Syllabus⭐
Unity and Diversity (A)
>
A1 molecules
>
A1.1: Water
A1.2: Nucleic Acids
A2 Cells
>
A2.1: Origins of Cells
A2.2: Cell Structure
A2.3: Viruses
A3 Organisms
>
A3.1: Diversity of Organisms
A3.2: Classification and Cladistics
A4 Ecosystems
>
A4.1: Evolution and Speciation
A4.2: Conservation of Biodiversity
Form and Function (B)
>
B1 Molecules
>
B1.1: Carbohydrates and Lipids
B1.2: Proteins
B2 Cells
>
B2.1 Membranes and Membrane Transport
B2.2 Organelles and Compartmentalization
B2.3 Cell Specialization
B3 Organisms
>
B3.1 Gas Exchange
B3.2 Transport
B3.3 Muscle and Motility
B4 Ecosystems
>
B4.1 Adaptation to Environment
B4.2 Ecological Niches
Interaction and Interdependence (C)
>
C1 Molecules
>
C1.1: Enzymes and Metabolism
C1.2: Cell Respiration
C1.3: Photosynthesis
C2 Cells
>
C2.1: Chemical Signaling
C2.2: Neural Signaling
C3 Organisms
>
C3.1: Integration of Body Systems
C3.2: Defense Against Disease
C4 Ecosystems
>
C4.1 Populations and Communities
C4.2 Transfers of Energy and Matter
Continuity and Change (D)
>
D1 Molecules
>
D1.1: DNA Replication
D1.2: Protein Synthesis
D1.3: Mutation and Gene Editing
D2 Cells
>
D2.1: Cell and Nuclear Division
D2.2: Gene Expression
D2.3: Water Potential
D3 Organisms
>
D3.1: Reproduction
D3.2: Inheritance
D3.3: Homeostasis
D4 Ecosystems
>
D4.1: Natural Selection
D4.2: Stability and Change
D4.3: Climate Change
Legacy Syllabus (2016)
>
Core
>
1: Cell Biology
>
1.1: Introduction to Cells
1.2: Ultrastructure of Cells
1.3: Membrane Structure
1.4: Membrane Transport
1.5: The Origin of Cells
1.6: Cell Division
2: Molecular Biology
>
2.1: Molecules to Metabolism
2.2: Water
2.3: Carbohydrates and Lipids
2.4: Proteins
2.5: Enzymes
2.6: DNA and RNA
2.7: DNA Replication, Transcription and Translation
2.8: Cell Respiration
2.9: Photosynthesis
3: Genetics
>
3.1: Genes
3.2: Chromosomes
3.3: Meiosis
3.4: Inheritance
3.5: Genetic Modification and Biotechnology
4: Ecology
>
4.1: Species, Communities and Ecosystems
4.2: Energy Flow
4.3: Carbon Cycling
4.4: Climate Change
5: Evolution and Biodiversity
>
5.1: Evidence for Evolution
5.2: Natural Selection
5.3: Classification and Biodiversity
5.4: Cladistics
6: Human Physiology
>
6.1: Digestion and Absorption
6.2: The Blood System
6.3: Defense Against Infectious Disease
6.4: Gas Exchange
6.5: Neurons and Synapses
6.6: Hormones, Homeostasis and Reproduction
Higher Level
>
7: Nucleic Acids
>
7.1: DNA Structure and Replication
7.2: Transcription and Gene Expression
7.3: Translation
8: Metabolism, Cell Respiration & Photosynthesis
>
8.1: Metabolism
8.2: Cell Respiration
8.3: Photosynthesis
9: Plant Biology
>
9.1: Transport in the Xylem of Plants
9.2: Transport in the Phloem of Plants
9.3: Growth in Plants
9.4: Reproduction in Plants
10: Genetics and Evolution
>
10.1: Meiosis
10.2: Inheritance
10.3: Gene Pools and Speciation
11: Animal Physiology
>
11.1: Antibody Production and Vaccination
11.2: Movement
11.3: Kidney and Osmoregulation
11.4: Sexual Reproduction
Options
>
D: Human Physiology
>
D.1: Human Nutrition
D.2: Digestion
D.3: Functions of the Liver
D.4: The Heart
D.5: Hormones and Metabolism
D.6: Transport of Respiratory Gases
IB Requirements
Learner Profile
Collaborative Sciences Project
External Assessment
Internal Assessment
>
Research Design
Analysis
Conclusion
Evaluation
Extended Essay
Exam Revision
Revision Tools
Skills for Biology
Tools
>
Experimental Techniques
>
Addressing Safety
Measuring Variables
>
Lab Drawings
Measurement Uncertainty
Techniques
>
Microscopy
Technology
>
Graphing with Excel
Mathematics
>
Statistics
>
Glossary of Statistic Terms and Equations
Descriptive Statistics
>
Skew and the Normal Distribution
Outliers
Measures of Central Tendancy
Measures of Spread
Pearson Correlation
Inferential Statistics
>
T-Test
ANOVA
Kruskal-Wallis
X2 Test for Independence
X2 Goodness of Fit
Graphing
>
Interpreting Error Bars
Inquiry Processes
>
Exploring & Designing
>
Research Questions
Hypotheses and Predictions
Varaibles
Sampling
Collecting & Processing Data
>
Data Tables
Concluding & Evaluating
>
Error Analysis
SHS Course Info
Above & Beyond
>
Biology Club
Pumpkin Carving
Scavenger Hunt
Science News
Wood Duck Project (legacy)
Invasive Crayfish Project (legacy)
Assessment
>
Class Grading IB Bio I
Class Grading IB Bio II
Daily Quizzes (legacy)
Lab Practicals (legacy)
Class Photos
Recommendations
Contact
About
Philosophy
Resume
Reflection
Favorite Quotes
AEF Blog
Expeditions
Bahamas (2009)
Trinidad (2010)
Trinidad (2011)
Ecuador (2012)
Trinidad (2013)
Peru (2014)
Bahamas (2015)
Peru (2016)
Costa Rica (2017)
Costa Rica (2018)
Arizona (2022)
Florida (2023)
Belize (2024)
Costa Rica (2025)
Summer Ecology Research
Teacher Resources
Topic D.3: Functions of the Liver
Essential Idea:
The chemical composition of the blood is regulated by the liver.
Outline answer to each objective statement for topic D.3 (coming soon)
Quizlet study set for this topic (coming soon)
At SHS, Topic D.3 is taught in the following class unit(s):
Liver Structure and Function
Statements & Objectives:
D.3.U1 The liver removes toxins from the blood and detoxifies them
.
Define “detoxification” as related to liver function.
Explain the role of the liver in the detoxification of alcohol (including role of ethanol dehydrogenase).
Outline the role of the liver in the detoxification of ammonia (and formation of urea).
D.3.U2 Components of red blood cells are recycled by the liver
.
State the length of a typical red blood cell life span.
D.3.U3 The breakdown of erythrocytes starts with phagocytosis of red blood cells by Kupffer cells
.
Explain how the structure of Kupffer cells fits their endosymbiosis function.
Create a flowchart to illustrate the steps and products of the splitting of hemoglobin
D.4.U4 Iron is carried to the bone marrow to produce hemoglobin in new red blood cells
.
Explain how and why iron is transported to the bone marrow bound to transferrin.
List three anatomical structures that have transferrin receptors on their cell membranes.
Outline the storage of iron in the liver and spleen (including the role of ferritin).
D.3.U5 Surplus cholesterol is converted to bile salts
.
Outline the roles of hepatocytes in the conversion of excess cholesterol into a component of bile.
Explain the synthesis of VLDL cholesterol by hepatocytes for transport of triglycerides.
Describe how the amount of saturated fat in a diet affects the amount of VLDL cholesterol synthesis by the liver.
D.3.U6 Endoplasmic reticulum and Golgi apparatus in hepatocytes produce plasma proteins
.
Define and list examples of “plasma proteins.”
Explain why hepatocytes have a lot of RER and Golgi.
D.3.U7 The liver intercepts blood from the gut to regulate nutrient levels
.
Explain the storage and release of glucose (including the role of glycogen, insulin and glucagon).
Outline the role of the liver in protein metabolism (and resulting nitrogenous waste formation).
D.3.U8 Some nutrients in excess can be stored in the liver
.
List four example nutrients that can be stored by the liver.
D.3.A1 Causes and consequences of jaundice
.
Outline the function and source of bilirubin.
Explain the role of hepatocytes and glucuronic acid in the conversion of bilirubin.
List components of bile.
Outline the role of bile ducts and gall bladder in the transport and storage of bile.
Describe when, where and why bile is secreted during digestion.
Define and list causes and symptoms of jaundice.
Describe the use of UV light as a treatment for jaundice.
D.3.A2 Dual blood supply to the liver and differences between sinusoids and capillaries
.
Draw and label a diagram of the liver, including the left and right lobes, hepatic portal vein, hepatic artery and the hepatic vein.
Compare liver blood supplies in terms of blood source (arrives from…), blood destination (flows towards…), and relative oxygen concentration.
Draw a labeled diagram of a sinusoid, inclusive of: bile canal cells, bile duct, hepatocytes, Kupffer cells, arterioles and venules.
Compare sinusoids to capillaries.
Outline the relationship between liver lobes, lobules and sinusoids.
D.3.NOS Educating the public on scientific claims—scientific studies have shown that high-density lipoprotein could be considered “good” cholesterol
.
Compare and define LDL, HDL, IDL, VLDL and chylomicrons.
Explain the structure of lipoproteins, including the types of molecules found in the hydrophobic core and hydrophilic surface.
⭐IB Bio Syllabus⭐
Unity and Diversity (A)
>
A1 molecules
>
A1.1: Water
A1.2: Nucleic Acids
A2 Cells
>
A2.1: Origins of Cells
A2.2: Cell Structure
A2.3: Viruses
A3 Organisms
>
A3.1: Diversity of Organisms
A3.2: Classification and Cladistics
A4 Ecosystems
>
A4.1: Evolution and Speciation
A4.2: Conservation of Biodiversity
Form and Function (B)
>
B1 Molecules
>
B1.1: Carbohydrates and Lipids
B1.2: Proteins
B2 Cells
>
B2.1 Membranes and Membrane Transport
B2.2 Organelles and Compartmentalization
B2.3 Cell Specialization
B3 Organisms
>
B3.1 Gas Exchange
B3.2 Transport
B3.3 Muscle and Motility
B4 Ecosystems
>
B4.1 Adaptation to Environment
B4.2 Ecological Niches
Interaction and Interdependence (C)
>
C1 Molecules
>
C1.1: Enzymes and Metabolism
C1.2: Cell Respiration
C1.3: Photosynthesis
C2 Cells
>
C2.1: Chemical Signaling
C2.2: Neural Signaling
C3 Organisms
>
C3.1: Integration of Body Systems
C3.2: Defense Against Disease
C4 Ecosystems
>
C4.1 Populations and Communities
C4.2 Transfers of Energy and Matter
Continuity and Change (D)
>
D1 Molecules
>
D1.1: DNA Replication
D1.2: Protein Synthesis
D1.3: Mutation and Gene Editing
D2 Cells
>
D2.1: Cell and Nuclear Division
D2.2: Gene Expression
D2.3: Water Potential
D3 Organisms
>
D3.1: Reproduction
D3.2: Inheritance
D3.3: Homeostasis
D4 Ecosystems
>
D4.1: Natural Selection
D4.2: Stability and Change
D4.3: Climate Change
Legacy Syllabus (2016)
>
Core
>
1: Cell Biology
>
1.1: Introduction to Cells
1.2: Ultrastructure of Cells
1.3: Membrane Structure
1.4: Membrane Transport
1.5: The Origin of Cells
1.6: Cell Division
2: Molecular Biology
>
2.1: Molecules to Metabolism
2.2: Water
2.3: Carbohydrates and Lipids
2.4: Proteins
2.5: Enzymes
2.6: DNA and RNA
2.7: DNA Replication, Transcription and Translation
2.8: Cell Respiration
2.9: Photosynthesis
3: Genetics
>
3.1: Genes
3.2: Chromosomes
3.3: Meiosis
3.4: Inheritance
3.5: Genetic Modification and Biotechnology
4: Ecology
>
4.1: Species, Communities and Ecosystems
4.2: Energy Flow
4.3: Carbon Cycling
4.4: Climate Change
5: Evolution and Biodiversity
>
5.1: Evidence for Evolution
5.2: Natural Selection
5.3: Classification and Biodiversity
5.4: Cladistics
6: Human Physiology
>
6.1: Digestion and Absorption
6.2: The Blood System
6.3: Defense Against Infectious Disease
6.4: Gas Exchange
6.5: Neurons and Synapses
6.6: Hormones, Homeostasis and Reproduction
Higher Level
>
7: Nucleic Acids
>
7.1: DNA Structure and Replication
7.2: Transcription and Gene Expression
7.3: Translation
8: Metabolism, Cell Respiration & Photosynthesis
>
8.1: Metabolism
8.2: Cell Respiration
8.3: Photosynthesis
9: Plant Biology
>
9.1: Transport in the Xylem of Plants
9.2: Transport in the Phloem of Plants
9.3: Growth in Plants
9.4: Reproduction in Plants
10: Genetics and Evolution
>
10.1: Meiosis
10.2: Inheritance
10.3: Gene Pools and Speciation
11: Animal Physiology
>
11.1: Antibody Production and Vaccination
11.2: Movement
11.3: Kidney and Osmoregulation
11.4: Sexual Reproduction
Options
>
D: Human Physiology
>
D.1: Human Nutrition
D.2: Digestion
D.3: Functions of the Liver
D.4: The Heart
D.5: Hormones and Metabolism
D.6: Transport of Respiratory Gases
IB Requirements
Learner Profile
Collaborative Sciences Project
External Assessment
Internal Assessment
>
Research Design
Analysis
Conclusion
Evaluation
Extended Essay
Exam Revision
Revision Tools
Skills for Biology
Tools
>
Experimental Techniques
>
Addressing Safety
Measuring Variables
>
Lab Drawings
Measurement Uncertainty
Techniques
>
Microscopy
Technology
>
Graphing with Excel
Mathematics
>
Statistics
>
Glossary of Statistic Terms and Equations
Descriptive Statistics
>
Skew and the Normal Distribution
Outliers
Measures of Central Tendancy
Measures of Spread
Pearson Correlation
Inferential Statistics
>
T-Test
ANOVA
Kruskal-Wallis
X2 Test for Independence
X2 Goodness of Fit
Graphing
>
Interpreting Error Bars
Inquiry Processes
>
Exploring & Designing
>
Research Questions
Hypotheses and Predictions
Varaibles
Sampling
Collecting & Processing Data
>
Data Tables
Concluding & Evaluating
>
Error Analysis
SHS Course Info
Above & Beyond
>
Biology Club
Pumpkin Carving
Scavenger Hunt
Science News
Wood Duck Project (legacy)
Invasive Crayfish Project (legacy)
Assessment
>
Class Grading IB Bio I
Class Grading IB Bio II
Daily Quizzes (legacy)
Lab Practicals (legacy)
Class Photos
Recommendations
Contact
About
Philosophy
Resume
Reflection
Favorite Quotes
AEF Blog
Expeditions
Bahamas (2009)
Trinidad (2010)
Trinidad (2011)
Ecuador (2012)
Trinidad (2013)
Peru (2014)
Bahamas (2015)
Peru (2016)
Costa Rica (2017)
Costa Rica (2018)
Arizona (2022)
Florida (2023)
Belize (2024)
Costa Rica (2025)
Summer Ecology Research
Teacher Resources