BIOLOGY FOR LIFE
  • New Syllabus⭐
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
  • Syllabus
    • Core >
      • 1: Cell Biology >
        • 1.1: Introduction to Cells
        • 1.2: Ultrastructure of Cells
        • 1.3: Membrane Structure
        • 1.4: Membrane Transport
        • 1.5: The Origin of Cells
        • 1.6: Cell Division
      • 2: Molecular Biology >
        • 2.1: Molecules to Metabolism
        • 2.2: Water
        • 2.3: Carbohydrates and Lipids
        • 2.4: Proteins
        • 2.5: Enzymes
        • 2.6: DNA and RNA
        • 2.7: DNA Replication, Transcription and Translation
        • 2.8: Cell Respiration
        • 2.9: Photosynthesis
      • 3: Genetics >
        • 3.1: Genes
        • 3.2: Chromosomes
        • 3.3: Meiosis
        • 3.4: Inheritance
        • 3.5: Genetic Modification and Biotechnology
      • 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2: Energy Flow
        • 4.3: Carbon Cycling
        • 4.4: Climate Change
      • 5: Evolution and Biodiversity >
        • 5.1: Evidence for Evolution
        • 5.2: Natural Selection
        • 5.3: Classification and Biodiversity
        • 5.4: Cladistics
      • 6: Human Physiology >
        • 6.1: Digestion and Absorption
        • 6.2: The Blood System
        • 6.3: Defense Against Infectious Disease
        • 6.4: Gas Exchange
        • 6.5: Neurons and Synapses
        • 6.6: Hormones, Homeostasis and Reproduction
    • Higher Level >
      • 7: Nucleic Acids >
        • 7.1: DNA Structure and Replication
        • 7.2: Transcription and Gene Expression
        • 7.3: Translation
      • 8: Metabolism, Cell Respiration & Photosynthesis >
        • 8.1: Metabolism
        • 8.2: Cell Respiration
        • 8.3: Photosynthesis
      • 9: Plant Biology >
        • 9.1: Transport in the Xylem of Plants
        • 9.2: Transport in the Phloem of Plants
        • 9.3: Growth in Plants
        • 9.4: Reproduction in Plants
      • 10: Genetics and Evolution >
        • 10.1: Meiosis
        • 10.2: Inheritance
        • 10.3: Gene Pools and Speciation
      • 11: Animal Physiology >
        • 11.1: Antibody Production and Vaccination
        • 11.2: Movement
        • 11.3: Kidney and Osmoregulation
        • 11.4: Sexual Reproduction
    • Options >
      • D: Human Physiology >
        • D.1: Human Nutrition
        • D.2: Digestion
        • D.3: Functions of the Liver
        • D.4: The Heart
        • D.5: Hormones and Metabolism
        • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Group 4 Project
    • External Exam
    • Internal Assessment >
      • HL class of 2024 >
        • Personal Engagement
        • Exploration
        • Analysis
        • Evaluation
        • Communication
      • SL class of 2024 >
        • Research Design
        • Analysis
        • Conclusion
        • Evaluation
    • Extended Essay
  • Investigation Skills
    • Lab Safety
    • Microscopy
    • Lab Drawings
    • Data Tables
    • Measurement
    • Statistics >
      • Descriptive Statistics >
        • Outliers
        • Skew
        • Measures of Central Tendancy
        • Measures of Spread
        • Pearson Correlation
      • Inferential Statistics >
        • T-Test
        • ANOVA
        • Kruskal-Wallis
        • X2 Test for Independence
        • X2 Goodness of Fit
    • Graphing >
      • Graphing with Excel
      • Interpreting Error Bars
    • Error Analysis
  • Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • IB Bio Dance
      • Wood Duck Project
      • Invasive Crayfish Project
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes
      • Lab Practicals
    • Class Photos
    • Recommendations
    • Supplemental Reading
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Site Feedback
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
  • Summer Ecology Research
  • Teacher Resources

B3.2  Transport

Guiding Questions:  
Guiding questions help students view the content of the syllabus through the conceptual lenses of both the themes and the levels of biological organization.
  • What are the differences and similarities between transport in animals and plants?
  • What adaptations facilitate transport of fluids in animals and plants?

​​Linking Questions:  
Linking questions strengthen students’ understanding by making connections between topics.  The ideal outcome of the linking questions is networked knowledge.
  • How do pressure differences contribute to the movement of materials in an organism?
  • What processes happen in cycles at each level of biological organization?

Resources:
  • At SHS, Topic B3.2 is taught in the Transport in Plants, the Heart, and the Circulatory System units. 
  • Quizlet study set for this topic.  Coming soon!
  • View the general sequence of the SHS course
  • View the SHS units mapped to the IB Biology curriculum roadmap
B3.2.1— Adaptations of capillaries for exchange of materials between blood and the internal or external environment.
  • Describe how the structures of capillaries are adapted to capillary function.  Include lumen diameter, branching, wall thickness, and fenestrations. 
B3.2.2— Structure of arteries and veins.
  • Compare the diameter, relative wall thickness, lumen size, number of wall layers, abundance of muscle and elastic fibers and presence of valves in arteries and veins.
  • Given a micrograph, identify a blood vessel as an artery or vein.​
B3.2.3— Adaptations of arteries for the transport of blood away from the heart.
  • State the function of arteries.
  • Describe the structures and functions of the three layers of the artery wall. 
  • Discuss how the wall thickness, lumen size, and muscle and elastic allow arteries to withstand and maintain high blood pressures.  ​
B3.2.4— Measurement of pulse rates.
  • State the unit of measurement of the pulse rate. 
  • Outline two methods for determining heart rate.​
B3.2.5— Adaptations of veins for the return of blood to the heart.
  • State the function of veins.
  • Discuss how pocket valves, thin walls and skeletal muscles maintain the flow of blood through a vein.​
B3.2.6- Causes and consequences of occlusion of the coronary arteries.
  • State the function of the coronary arteries. 
  • Outline the cause and consequence of a coronary occlusion.
  • Evaluate correlations between diet and lifestyle variables and risk of coronary heart disease.
  • List factors that are correlated with an increased risk of coronary occlusion and heart attack.
B3.2.7—  Transport of water from roots to leaves during transpiration.
  • State that xylem tissue is used to transport water from roots to leaves in plants.
  • Outline the role of cellulose in the transport of water via capillary action.
  • Describe the cause and consequence of transpiration pull. 
  • State why transport of water relies on cohesion between water molecules.
  • State that transpiration is a passive process.
B3.2.8- Adaptations of xylem vessels for transport of water.
  • Describe how the structure of xylem vessels are adapted for the transport of water under low pressure. 
  • Outline how xylem is able to maintain rigidity even under low pressure or mechanical disturbance.
B3.2.9-  Distribution of tissues in a transverse section of the stem of a dicotyledonous plant.  
  • Draw a plan diagram to show the distribution of tissues in a stem, including vascular bundles, xylem, phloem, cambium, cortex, pith and epidermis.
  • Outline the function of tissues in a stem, including vascular bundles, xylem, phloem, cambium, cortex, pith and epidermis.
  • State two ways xylem and phloem can be differentiated in cross sections of stem.
B3.2.10- Distribution of tissues in a transverse section of the root of a dicotyledonous plant.
  • Draw a plan diagram to show the distribution of tissues in a root, including vascular bundles, xylem, phloem, cortex and epidermis.
  • Outline the function of tissues in a root, including vascular bundles, xylem, phloem, cortex and epidermis.
  • State two ways xylem and phloem can be differentiated in cross sections of root.
AHL ​B3.2.11- Release and reuptake of tissue fluid in capillaries.
  • List components of blood plasma.
  • Define tissue fluid. 
  • Describe the cause and effect of diffusion of blood plasma into and out of a capillary network from tissue fluid.
AHL B3.2.12- Exchange of substances between tissue fluid and cells in tissues.
  • Compare and contrast the substances found in blood plasma and tissue plasma.
  • Outline the direction of transport of substances that are exchanged between tissue fluid and cells in the tissues.
AHL B3.2.13- Drainage of excess tissue fluid into lymph ducts.
  • Outline why there is a need to drain excess tissue fluid into lymph ducts.
  • Outline the structure and function of lymph ducts. 
  • State how lymph is returned to the blood circulation.
AHL B3.2.14- Differences between the single circulation of bony fish and the double circulation of mammals.
  • State the function of the heart and lungs/gills in the circulation of blood.
  • Draw a diagram to illustrate the double circulation system in mammals.
  • Draw a diagram to illustrate the single circulation system in fish.
  • Explain why the mammalian heart must function as a double pump.
AHL B3.2.15- Adaptations of the mammalian heart for delivering pressurized blood to the arteries.
  • Label a diagram of the heart with the following structure names:  superior vena cava, inferior vena cava, pulmonary semilunar valve, aorta, pulmonary artery, pulmonary veins, aortic semilunar valve, left atrioventricular valve, left ventricle, septum, right ventricle, left atrium, right atrium, septum and right atrioventricular valve.
  • Outline how the following structures allow the heart to function in delivering pressurized blood to arteries: cardiac muscle, pacemaker, atria, ventricles, atrioventricular and semilunar valves, septum and coronary vessels. ​
AHL B3.2.16- Stages in the cardiac cycle.
  • Define myogenic contraction.
  • Define cardiac cycle.
  • Outline the role of the pacemaker cells in the sinoatrial node.
  • Describe the propagation of the electrical signal from the sinoatrial node through the atria and ventricles.
  • Explain the flow of blood during atrial and ventricular systole and diastole.
  • Define systolic and diastolic blood pressure. 
  • State the cause of systolic and diastolic blood pressure.
  • Interpret systolic and diastolic blood pressure measurements from data and graphs.
AHL B3.2.17- Generation of root pressure in xylem vessels by active transport of mineral ions.
  • List conditions in which a plant may generate root pressure to transport water. 
  • Outline the mechanism by which roots maintain a positive pressure potential when evaporation from leaves is insufficient to move water through a plant.​
AHL B3.2.18- Adaptations of phloem sieve tubes and companion cells for translocation of sap.
  • Define translocation, phloem sap, source and sink.
  • List example source and sink tissues.
  • State that phloem transport is bidirectional.
  • Outline the stages of phloem translocation including loading of carbohydrates at a source, transport of carbohydrates through the plant, and unloading of carbohydrates at a sink.
  • Outline the structure and function of sieve tube elements, with specific mention of the rigid cell wall, reduced cytoplasm and organelles, no nucleus and sieve plates. 
  • Outline the structure and function of companion cells, with specific mention of mitochondria and plasmodesmata.
I give many of my IB Biology resources away, for the benefit of students and teachers around the world. 
If you've found the materials helpful, please consider making a contribution of any amount
to 
this Earthwatch Expedition Fund. 

​Did I forget something?  Know of a mistake? Have a suggestion?  Let me know by emailing me here.

Before using any of the files available on this site,
​please familiarize yourself with the 
Creative Commons Attribution License. 
​​​It prohibits the use of any material on this site for commercial  purposes of any kind.  ​
​
Picture
  • New Syllabus⭐
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
  • Syllabus
    • Core >
      • 1: Cell Biology >
        • 1.1: Introduction to Cells
        • 1.2: Ultrastructure of Cells
        • 1.3: Membrane Structure
        • 1.4: Membrane Transport
        • 1.5: The Origin of Cells
        • 1.6: Cell Division
      • 2: Molecular Biology >
        • 2.1: Molecules to Metabolism
        • 2.2: Water
        • 2.3: Carbohydrates and Lipids
        • 2.4: Proteins
        • 2.5: Enzymes
        • 2.6: DNA and RNA
        • 2.7: DNA Replication, Transcription and Translation
        • 2.8: Cell Respiration
        • 2.9: Photosynthesis
      • 3: Genetics >
        • 3.1: Genes
        • 3.2: Chromosomes
        • 3.3: Meiosis
        • 3.4: Inheritance
        • 3.5: Genetic Modification and Biotechnology
      • 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2: Energy Flow
        • 4.3: Carbon Cycling
        • 4.4: Climate Change
      • 5: Evolution and Biodiversity >
        • 5.1: Evidence for Evolution
        • 5.2: Natural Selection
        • 5.3: Classification and Biodiversity
        • 5.4: Cladistics
      • 6: Human Physiology >
        • 6.1: Digestion and Absorption
        • 6.2: The Blood System
        • 6.3: Defense Against Infectious Disease
        • 6.4: Gas Exchange
        • 6.5: Neurons and Synapses
        • 6.6: Hormones, Homeostasis and Reproduction
    • Higher Level >
      • 7: Nucleic Acids >
        • 7.1: DNA Structure and Replication
        • 7.2: Transcription and Gene Expression
        • 7.3: Translation
      • 8: Metabolism, Cell Respiration & Photosynthesis >
        • 8.1: Metabolism
        • 8.2: Cell Respiration
        • 8.3: Photosynthesis
      • 9: Plant Biology >
        • 9.1: Transport in the Xylem of Plants
        • 9.2: Transport in the Phloem of Plants
        • 9.3: Growth in Plants
        • 9.4: Reproduction in Plants
      • 10: Genetics and Evolution >
        • 10.1: Meiosis
        • 10.2: Inheritance
        • 10.3: Gene Pools and Speciation
      • 11: Animal Physiology >
        • 11.1: Antibody Production and Vaccination
        • 11.2: Movement
        • 11.3: Kidney and Osmoregulation
        • 11.4: Sexual Reproduction
    • Options >
      • D: Human Physiology >
        • D.1: Human Nutrition
        • D.2: Digestion
        • D.3: Functions of the Liver
        • D.4: The Heart
        • D.5: Hormones and Metabolism
        • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Group 4 Project
    • External Exam
    • Internal Assessment >
      • HL class of 2024 >
        • Personal Engagement
        • Exploration
        • Analysis
        • Evaluation
        • Communication
      • SL class of 2024 >
        • Research Design
        • Analysis
        • Conclusion
        • Evaluation
    • Extended Essay
  • Investigation Skills
    • Lab Safety
    • Microscopy
    • Lab Drawings
    • Data Tables
    • Measurement
    • Statistics >
      • Descriptive Statistics >
        • Outliers
        • Skew
        • Measures of Central Tendancy
        • Measures of Spread
        • Pearson Correlation
      • Inferential Statistics >
        • T-Test
        • ANOVA
        • Kruskal-Wallis
        • X2 Test for Independence
        • X2 Goodness of Fit
    • Graphing >
      • Graphing with Excel
      • Interpreting Error Bars
    • Error Analysis
  • Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • IB Bio Dance
      • Wood Duck Project
      • Invasive Crayfish Project
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes
      • Lab Practicals
    • Class Photos
    • Recommendations
    • Supplemental Reading
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Site Feedback
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
  • Summer Ecology Research
  • Teacher Resources