BIOLOGY FOR LIFE
  • IB Bio Syllabus
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
  • IB Requirements
    • Internal Assessment >
      • Research Design
      • Analysis
      • Conclusion
      • Evaluation
    • External Assessment >
      • Exam Revision
    • Extended Essay
    • Reflective Project
    • Collaborative Sciences Project
    • Learner Profile
  • Skills for Biology
    • Tools >
      • 1. Experimental Techniques >
        • Addressing Safety
        • Measuring Variables >
          • Measurement Uncertainties
          • Observations
          • Biological Drawings
        • Applying Techniques >
          • Microscopy
      • 2. Technology >
        • Tech to Collect Data
        • Tech to Process Data
      • 3. Mathematics >
        • General Math
        • Units and Symbols
        • Processing Uncertainties
        • Graphing >
          • Types of Graphs
          • Graphing with Excel
          • Graphing Error Bars
          • Interpreting Error Bars
    • Inquiry Processes >
      • Exploring & Designing >
        • Research Questions
        • Hypotheses and Predictions
        • Varaibles
        • Sampling
      • Collecting & Processing Data >
        • Data Tables
      • Concluding & Evaluating >
        • Error Analysis
  • Statistics
    • Descriptive Statistics >
      • Skew and the Normal Distribution
      • Outliers
      • Measures of Central Tendancy
      • Measures of Dispersion
      • Correlation Coefficients
      • Coefficient of Determination
    • Inferential Statistics >
      • Standard Error
      • T-Test
      • ANOVA
      • Kruskal-Wallis
      • X2 Test of Independence
      • X2 Goodness of Fit
    • Glossary of Statistic Terms and Equations
  • SHS Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • Wood Duck Project (legacy)
      • Invasive Crayfish Project (legacy)
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes (legacy)
      • Lab Practicals (legacy)
    • Class Photos
    • Recommendations
  • Contact
    • About >
      • Philosophy
      • Resume
      • Reflection
      • Favorite Quotes
      • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
    • Belize (2024)
    • Costa Rica (2025)
  • Summer Ecology Research
  • Teacher Resources

A1.1:  Water

Theme:  Unity and Diversity
Unity:
Water's consistent molecular structure and resulting properties (polarity, hydrogen bonding, solvency) unify all life by providing the essential medium for biochemistry.
Diversity:
The varying interactions of organisms with water, and the challenges or opportunities presented by water in different environments, have driven an incredible diversity of biological adaptations, structures, and functions.
Guiding Questions:  
Guiding questions help students view the content of the syllabus through the conceptual lenses of both the themes and the levels of biological organization.
  • What physical and chemical properties of water make it essential for life?
  • What are the challenges and opportunities of water as a habitat?

Linking Questions:  
Linking questions strengthen students’ understanding by making connections between topics.  The ideal outcome of the linking questions is networked knowledge.
  • How do the various intermolecular forces of attraction affect biological systems?
  • What biological processes only happen at or near surfaces?
  • ​What are the implications of solubility differences between chemical substances for living organisms? (D2.3)​

Resources:
  • ​Quizlet study set for this topic​
A1.1.1 - Water as medium of life.
  • State that the first cells originated in water. 
  • ​List reasons why water is a substance on which life depends​
A1.1.2— Hydrogen bonds as a consequence of the polar covalent bonds within water molecules.
  • Describe the structure of an atom.
  • Outline the formation of ionic and covalent bonds between atoms.
  • Explain the sharing of electrons between atoms in a polar covalent bond.
  • State the location of the polar covalent bond within a water molecule.
  • Explain the partial charges of the oxygen and hydrogen atoms within a water molecule.
  • Draw a water molecule, including notation to depict the partial charges of the atoms. 
  • Outline the cause of the formation of hydrogen bonds between water molecules.
  • Outline the consequences of the collective strength of hydrogen bonds between water molecules.​
A1.1.3— Cohesion of water molecules due to hydrogen bonding and consequences for organisms.
  • Define cohesion.
  • Describe how water moves through the xylem of a vascular plant.
  • Outline the cause of surface tension. 
  • State a benefit to living things that results from surface tension.
A1.1.4— Adhesion of water to materials that are polar or charged and impacts for organisms.
  • Define adhesion.
  • Define polar.
  • Define ion.
  • Compare cation and anion.
  • Explain why water is attracted to molecules that are polar or charged. 
  • Outline the cause of capillary action.
  • Describe capillary action in plant tissue.
  • Outline the cause and effect of capillary action in soil.
 A1.1.5— Solvent properties of water linked to its role as a medium for metabolism and for transport in plants and animals.
  • Identify solvent and solutes of a solution.
  • Define solvation.
  • Explain why water is able to dissolve charged and polar molecules.
  • Outline the solvation of hydrophilic and hydrophobic substances.
  • State an example of the function of a molecule depending on it being hydrophobic and insoluble. 
  • State an example of the function of a molecule depending on it being hydrophilic and soluble. 
  • Outline the role of water as a medium for metabolism.
  • Describe the role of water as a medium for transport in vascular plants.
  • Describe the role of water as a medium for transport in animal blood.
A1.1.6— Physical properties of water and the consequences for animals in aquatic habitats.
  • Define physical property.
  • List physical properties of water that are consequential for animals in aquatic habitats. 
  • Outline the cause and effect of buoyancy. 
  • Outline the cause and effect of viscosity. 
  • Compare viscosity of air to water to blood. 
  • Define thermal conductivity.
  • Compare less conductive to more conductive materials. 
  • Outline a consequence to life of the thermal conductivity of air and water.
  • Define specific heat capacity.
  • Describe why water has a high specific heat capacity.
  • State two benefits to life of the high specific heat capacity of water. 
  • Outline a benefit to life of water's high specific heat capacity.
  • Compare the physical properties of water to those of air.
  • Describe how the  black-throated loon (Gavia arctica) and/or the ringed seal (Pusa hispida) interact with the physical properties of water in their habitat.
AHL  A1.1.7— Extraplanetary origin of water on Earth and reasons for its retention.
  • Explain  the hypothesis that asteroids are responsible for the origin of water on Earth.
  • State two reasons why water was retained on early Earth.​
AHL  A1.1.8— Relationship between the search for extraterrestrial life and the presence of water.
  • Explain why the presence of water is considered fundamental to the search for extraterrestrial life.
  • Define “Goldilocks zone” in relation to the search for extraterrestrial life. 
I give many of my IB Biology resources away, for the benefit of students and teachers around the world. 
If you've found the materials helpful, please consider making a contribution of any amount
to this Earthwatch Expedition Fund or donating a puzzle to our classroom from our wish list.


​Did I forget something?  Know of a mistake? Have a suggestion?  Let me know by emailing me here.

Before using any of the files available on this site,
​please familiarize yourself with the 
Creative Commons Attribution License. 
​​​It prohibits the use of any material on this site for commercial  purposes of any kind.  ​
​
Picture
  • IB Bio Syllabus
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
  • IB Requirements
    • Internal Assessment >
      • Research Design
      • Analysis
      • Conclusion
      • Evaluation
    • External Assessment >
      • Exam Revision
    • Extended Essay
    • Reflective Project
    • Collaborative Sciences Project
    • Learner Profile
  • Skills for Biology
    • Tools >
      • 1. Experimental Techniques >
        • Addressing Safety
        • Measuring Variables >
          • Measurement Uncertainties
          • Observations
          • Biological Drawings
        • Applying Techniques >
          • Microscopy
      • 2. Technology >
        • Tech to Collect Data
        • Tech to Process Data
      • 3. Mathematics >
        • General Math
        • Units and Symbols
        • Processing Uncertainties
        • Graphing >
          • Types of Graphs
          • Graphing with Excel
          • Graphing Error Bars
          • Interpreting Error Bars
    • Inquiry Processes >
      • Exploring & Designing >
        • Research Questions
        • Hypotheses and Predictions
        • Varaibles
        • Sampling
      • Collecting & Processing Data >
        • Data Tables
      • Concluding & Evaluating >
        • Error Analysis
  • Statistics
    • Descriptive Statistics >
      • Skew and the Normal Distribution
      • Outliers
      • Measures of Central Tendancy
      • Measures of Dispersion
      • Correlation Coefficients
      • Coefficient of Determination
    • Inferential Statistics >
      • Standard Error
      • T-Test
      • ANOVA
      • Kruskal-Wallis
      • X2 Test of Independence
      • X2 Goodness of Fit
    • Glossary of Statistic Terms and Equations
  • SHS Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • Wood Duck Project (legacy)
      • Invasive Crayfish Project (legacy)
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes (legacy)
      • Lab Practicals (legacy)
    • Class Photos
    • Recommendations
  • Contact
    • About >
      • Philosophy
      • Resume
      • Reflection
      • Favorite Quotes
      • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
    • Belize (2024)
    • Costa Rica (2025)
  • Summer Ecology Research
  • Teacher Resources