BIOLOGY FOR LIFE
  • IB Bio Syllabus
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
  • IB Requirements
    • Internal Assessment >
      • Research Design
      • Analysis
      • Conclusion
      • Evaluation
    • External Assessment >
      • Exam Revision
    • Extended Essay
    • Reflective Project
    • Collaborative Sciences Project
    • Learner Profile
  • Skills for Biology
    • Tools >
      • Experimental Techniques >
        • Addressing Safety
        • Measuring Variables >
          • Lab Drawings
          • Measurement Uncertainty
        • Techniques >
          • Microscopy
      • Technology >
        • Graphing with Excel
      • Mathematics >
        • Statistics >
          • Glossary of Statistic Terms and Equations
          • Descriptive Statistics >
            • Skew and the Normal Distribution
            • Outliers
            • Measures of Central Tendancy
            • Measures of Spread
            • Pearson Correlation
          • Inferential Statistics >
            • T-Test
            • ANOVA
            • Kruskal-Wallis
            • X2 Test for Independence
            • X2 Goodness of Fit
        • Graphing >
          • Interpreting Error Bars
    • Inquiry Processes >
      • Exploring & Designing >
        • Research Questions
        • Hypotheses and Predictions
        • Varaibles
        • Sampling
      • Collecting & Processing Data >
        • Data Tables
      • Concluding & Evaluating >
        • Error Analysis
  • SHS Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • Wood Duck Project (legacy)
      • Invasive Crayfish Project (legacy)
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes (legacy)
      • Lab Practicals (legacy)
    • Class Photos
    • Recommendations
  • Contact
    • About >
      • Philosophy
      • Resume
      • Reflection
      • Favorite Quotes
      • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
    • Belize (2024)
    • Costa Rica (2025)
  • Summer Ecology Research
  • Teacher Resources

A2.1:  Origins of Cells

Guiding Questions:  
Guiding questions help students view the content of the syllabus through the conceptual lenses of both the themes and the levels of biological organization.
  • What plausible hypothesis could account for the origin of life? 
  • ​What intermediate stages could there have been between non-living matter and the first living cells?

Linking Questions:  
Linking questions strengthen students’ understanding by making connections between topics.  The ideal outcome of the linking questions is networked knowledge.
  • For what reasons is heredity an essential feature of living things? 
  • What is needed for structures to be able to evolve by natural selection?​​
AHL A2.1.1— Conditions on early Earth and the prebiotic formation of carbon compounds.
  • Outline the conditions that are thought to have existed on prebiotic Earth, including atmosphere, temperature, UV radiation, volcanic activity and asteroid bombardment. 
  • State that the conditions of prebiotic Earth may have caused a variety of carbon compounds to form spontaneously. ​
AHL A2.1.2— Cells as the smallest units of self-sustaining life.
  • Discuss the challenges of defining matter as living or nonliving.
  • Discuss the reasons why cells are considered to be living. 
  • Discuss the reasons why viruses are considered to be non-living.
AHL A2.1.3— Challenge of explaining the spontaneous origin of cells.  
  • Outline the intermediate stages needed for the evolution of the first cells on prebiotic Earth.
  • Discuss limitations in testing hypotheses about the evolution of the first cells. 
AHL A2.1.4— Evidence for the origin of carbon compounds.
  • Outline the methodology, results and conclusion that can be drawn from Miller and Urey’s experiments into the origin of biologically relevant carbon compounds.
  • Discuss the benefits and limitations of the Miller-Urey apparatus as a model for a natural phenomena.
AHL A2.1.5— Spontaneous formation of vesicles by coalescence of fatty acids into spherical bilayers.  ​
  • Outline the cause and consequence of the spontaneous formation of membranes and vesicles by amphipathic molecules such as fatty acids and phospholipids on prebiotic Earth.
AHL A2.1.6— RNA as a presumed first genetic material.
  • State that modern cells use DNA as the genetic material and enzyme proteins as catalysts of metabolism.
  • List properties of RNA that suggest it was the first genetic material.
  • Compare the genetic stability of RNA and DNA.
  • Outline the ribosomal ribozyme as a type of RNA that is still used as a catalyst.
AHL A2.1.7— Evidence for a last universal common ancestor.
  • Define LUCA.
  • Discuss why the LUCA is not thought to be the first cell, but rather is thought to be the last common ancestor to all living cells.
  • Explain the use of deductive reasoning to predict what genes were present in the LUCA cells.
  • List characteristics of the LUCA.
AHL A2.1.8— Approaches used to estimate dates of the first living cells and the last universal common ancestor. 
  • Compare the estimated dates for the evolution of the first cells and of the LUCA cells to the age of Earth.
  • Describe stromatolites as the earliest direct evidence of fossilized life. 
  • Outline the use of isotopes and the molecular clock for estimating dates of the first cells and of the LUCA cells. 
AHL ​A2.1.9— Evidence for the evolution of the last universal common ancestor in the vicinity of hydrothermal vents. 
  • Explain the use of deductive reasoning to predict what genes were present in LUCA cells. 
  • Describe the conditions present at a white-smoker hydrothermal vent. 
  • Explain how knowledge of the genes present in the LUCA cells can provide evidence that the cells lived in the vicinity of hydrothermal vents.
I give many of my IB Biology resources away, for the benefit of students and teachers around the world. 
If you've found the materials helpful, please consider making a contribution of any amount
to this Earthwatch Expedition Fund or donating a puzzle to our classroom from our wish list.


​Did I forget something?  Know of a mistake? Have a suggestion?  Let me know by emailing me here.

Before using any of the files available on this site,
​please familiarize yourself with the 
Creative Commons Attribution License. 
​​​It prohibits the use of any material on this site for commercial  purposes of any kind.  ​
​
Picture
  • IB Bio Syllabus
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
  • IB Requirements
    • Internal Assessment >
      • Research Design
      • Analysis
      • Conclusion
      • Evaluation
    • External Assessment >
      • Exam Revision
    • Extended Essay
    • Reflective Project
    • Collaborative Sciences Project
    • Learner Profile
  • Skills for Biology
    • Tools >
      • Experimental Techniques >
        • Addressing Safety
        • Measuring Variables >
          • Lab Drawings
          • Measurement Uncertainty
        • Techniques >
          • Microscopy
      • Technology >
        • Graphing with Excel
      • Mathematics >
        • Statistics >
          • Glossary of Statistic Terms and Equations
          • Descriptive Statistics >
            • Skew and the Normal Distribution
            • Outliers
            • Measures of Central Tendancy
            • Measures of Spread
            • Pearson Correlation
          • Inferential Statistics >
            • T-Test
            • ANOVA
            • Kruskal-Wallis
            • X2 Test for Independence
            • X2 Goodness of Fit
        • Graphing >
          • Interpreting Error Bars
    • Inquiry Processes >
      • Exploring & Designing >
        • Research Questions
        • Hypotheses and Predictions
        • Varaibles
        • Sampling
      • Collecting & Processing Data >
        • Data Tables
      • Concluding & Evaluating >
        • Error Analysis
  • SHS Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • Wood Duck Project (legacy)
      • Invasive Crayfish Project (legacy)
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes (legacy)
      • Lab Practicals (legacy)
    • Class Photos
    • Recommendations
  • Contact
    • About >
      • Philosophy
      • Resume
      • Reflection
      • Favorite Quotes
      • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
    • Belize (2024)
    • Costa Rica (2025)
  • Summer Ecology Research
  • Teacher Resources