BIOLOGY FOR LIFE
⭐IB Bio Syllabus⭐
Unity and Diversity (A)
>
A1 molecules
>
A1.1: Water
A1.2: Nucleic Acids
A2 Cells
>
A2.1: Origins of Cells
A2.2: Cell Structure
A2.3: Viruses
A3 Organisms
>
A3.1: Diversity of Organisms
A3.2: Classification and Cladistics
A4 Ecosystems
>
A4.1: Evolution and Speciation
A4.2: Conservation of Biodiversity
Form and Function (B)
>
B1 Molecules
>
B1.1: Carbohydrates and Lipids
B1.2: Proteins
B2 Cells
>
B2.1 Membranes and Membrane Transport
B2.2 Organelles and Compartmentalization
B2.3 Cell Specialization
B3 Organisms
>
B3.1 Gas Exchange
B3.2 Transport
B3.3 Muscle and Motility
B4 Ecosystems
>
B4.1 Adaptation to Environment
B4.2 Ecological Niches
Interaction and Interdependence (C)
>
C1 Molecules
>
C1.1: Enzymes and Metabolism
C1.2: Cell Respiration
C1.3: Photosynthesis
C2 Cells
>
C2.1: Chemical Signaling
C2.2: Neural Signaling
C3 Organisms
>
C3.1: Integration of Body Systems
C3.2: Defense Against Disease
C4 Ecosystems
>
C4.1 Populations and Communities
C4.2 Transfers of Energy and Matter
Continuity and Change (D)
>
D1 Molecules
>
D1.1: DNA Replication
D1.2: Protein Synthesis
D1.3: Mutation and Gene Editing
D2 Cells
>
D2.1: Cell and Nuclear Division
D2.2: Gene Expression
D2.3: Water Potential
D3 Organisms
>
D3.1: Reproduction
D3.2: Inheritance
D3.3: Homeostasis
D4 Ecosystems
>
D4.1: Natural Selection
D4.2: Stability and Change
D4.3: Climate Change
Legacy Syllabus (2016)
>
Core
>
1: Cell Biology
>
1.1: Introduction to Cells
1.2: Ultrastructure of Cells
1.3: Membrane Structure
1.4: Membrane Transport
1.5: The Origin of Cells
1.6: Cell Division
2: Molecular Biology
>
2.1: Molecules to Metabolism
2.2: Water
2.3: Carbohydrates and Lipids
2.4: Proteins
2.5: Enzymes
2.6: DNA and RNA
2.7: DNA Replication, Transcription and Translation
2.8: Cell Respiration
2.9: Photosynthesis
3: Genetics
>
3.1: Genes
3.2: Chromosomes
3.3: Meiosis
3.4: Inheritance
3.5: Genetic Modification and Biotechnology
4: Ecology
>
4.1: Species, Communities and Ecosystems
4.2: Energy Flow
4.3: Carbon Cycling
4.4: Climate Change
5: Evolution and Biodiversity
>
5.1: Evidence for Evolution
5.2: Natural Selection
5.3: Classification and Biodiversity
5.4: Cladistics
6: Human Physiology
>
6.1: Digestion and Absorption
6.2: The Blood System
6.3: Defense Against Infectious Disease
6.4: Gas Exchange
6.5: Neurons and Synapses
6.6: Hormones, Homeostasis and Reproduction
Higher Level
>
7: Nucleic Acids
>
7.1: DNA Structure and Replication
7.2: Transcription and Gene Expression
7.3: Translation
8: Metabolism, Cell Respiration & Photosynthesis
>
8.1: Metabolism
8.2: Cell Respiration
8.3: Photosynthesis
9: Plant Biology
>
9.1: Transport in the Xylem of Plants
9.2: Transport in the Phloem of Plants
9.3: Growth in Plants
9.4: Reproduction in Plants
10: Genetics and Evolution
>
10.1: Meiosis
10.2: Inheritance
10.3: Gene Pools and Speciation
11: Animal Physiology
>
11.1: Antibody Production and Vaccination
11.2: Movement
11.3: Kidney and Osmoregulation
11.4: Sexual Reproduction
Options
>
D: Human Physiology
>
D.1: Human Nutrition
D.2: Digestion
D.3: Functions of the Liver
D.4: The Heart
D.5: Hormones and Metabolism
D.6: Transport of Respiratory Gases
Revision Tools
IB Requirements
Learner Profile
Collaborative Sciences Project
External Assessment
Internal Assessment
>
Research Design
Analysis
Conclusion
Evaluation
Extended Essay
Exam Revision
Skills for Biology
Tools
>
Experimental Techniques
>
Addressing Safety
Measuring Variables
>
Lab Drawings
Measurement Uncertainty
Techniques
>
Microscopy
Technology
>
Graphing with Excel
Mathematics
>
Statistics
>
Descriptive Statistics
>
Outliers
Skew
Measures of Central Tendancy
Measures of Spread
Pearson Correlation
Inferential Statistics
>
T-Test
ANOVA
Kruskal-Wallis
X2 Test for Independence
X2 Goodness of Fit
Graphing
>
Interpreting Error Bars
Inquiry Processes
>
Exploring & Designing
Collecting & Processing Data
>
Data Tables
Concluding & Evaluating
>
Error Analysis
SHS Course Info
Above & Beyond
>
Biology Club
Pumpkin Carving
Scavenger Hunt
Science News
Wood Duck Project (legacy)
Invasive Crayfish Project (legacy)
Assessment
>
Class Grading IB Bio I
Class Grading IB Bio II
Daily Quizzes (legacy)
Lab Practicals (legacy)
Class Photos
Recommendations
Contact
About
Philosophy
Resume
Reflection
Favorite Quotes
AEF Blog
Expeditions
Bahamas (2009)
Trinidad (2010)
Trinidad (2011)
Ecuador (2012)
Trinidad (2013)
Peru (2014)
Bahamas (2015)
Peru (2016)
Costa Rica (2017)
Costa Rica (2018)
Arizona (2022)
Florida (2023)
Belize (2024)
Costa Rica (2025)
Summer Ecology Research
Teacher Resources
Essential Idea:
Ecosystems require a continuous supply of energy to fuel life processes and to replace energy lost as heat.
Outline answer to each objective statement for topic 4.2 (coming soon)
Quizlet study set for this topic
At SHS, Topic 4.2 is taught in the following class unit(s):
Energy Flow through Ecosystem
4.2.U1 Most ecosystems rely on a supply of energy from sunlight.
State how energy in carbon compounds enters most biological communities.
List three groups of autotrophs.
4.2.U2 Light energy is converted to chemical energy in carbon compounds by photosynthesis.
Outline how light energy is converted to chemical energy.
4.2.U3 Chemical energy in carbon compounds flows through food chains by means of feeding.
Define food chain and food web.
State the meaning of the arrow in a food web or chain.
Draw a food chain, labeling the producer, primary consumer, secondary consumer and tertiary consumer.
4.2.U4 Energy released from carbon compounds by respiration is used in living organisms and converted to heat.
List three reasons why living organisms need energy for cell activities.
State the function of ATP.
Outline how ATP is formed, referencing exothermic and endothermic reactions.
Outline the reason why respiration releases heat.
4.2.U5 Living organisms cannot convert heat to other forms of energy.
Draw a flow chart to illustrate the energy conversions performed by living organisms.
4.2.U6 Heat is lost from ecosystems.
State the reason why heat created by living organisms is eventually lost from the ecosystem.
4.2.U7 Energy losses between trophic levels restrict the length of food chains and the biomass of higher trophic levels.
Define biomass.
Define trophic level.
State the unit used for communicating the energy in each trophic level of a food chain.
Outline three reasons why the amount of energy decreases at higher trophic levels.
State the average amount of energy passed through each trophic level of a food chain.
4.2.S1 Quantitative representations of energy flow using pyramids of energy.
Describe the shape and units of a pyramid of energy.
Draw a pyramid of energy given data for an ecosystem.
4.2.NOS Use theories to explain natural phenomena- the concepts of energy flow explains the limited length of food chains.
Explain why there is a limited number of organisms in a food chain.
⭐IB Bio Syllabus⭐
Unity and Diversity (A)
>
A1 molecules
>
A1.1: Water
A1.2: Nucleic Acids
A2 Cells
>
A2.1: Origins of Cells
A2.2: Cell Structure
A2.3: Viruses
A3 Organisms
>
A3.1: Diversity of Organisms
A3.2: Classification and Cladistics
A4 Ecosystems
>
A4.1: Evolution and Speciation
A4.2: Conservation of Biodiversity
Form and Function (B)
>
B1 Molecules
>
B1.1: Carbohydrates and Lipids
B1.2: Proteins
B2 Cells
>
B2.1 Membranes and Membrane Transport
B2.2 Organelles and Compartmentalization
B2.3 Cell Specialization
B3 Organisms
>
B3.1 Gas Exchange
B3.2 Transport
B3.3 Muscle and Motility
B4 Ecosystems
>
B4.1 Adaptation to Environment
B4.2 Ecological Niches
Interaction and Interdependence (C)
>
C1 Molecules
>
C1.1: Enzymes and Metabolism
C1.2: Cell Respiration
C1.3: Photosynthesis
C2 Cells
>
C2.1: Chemical Signaling
C2.2: Neural Signaling
C3 Organisms
>
C3.1: Integration of Body Systems
C3.2: Defense Against Disease
C4 Ecosystems
>
C4.1 Populations and Communities
C4.2 Transfers of Energy and Matter
Continuity and Change (D)
>
D1 Molecules
>
D1.1: DNA Replication
D1.2: Protein Synthesis
D1.3: Mutation and Gene Editing
D2 Cells
>
D2.1: Cell and Nuclear Division
D2.2: Gene Expression
D2.3: Water Potential
D3 Organisms
>
D3.1: Reproduction
D3.2: Inheritance
D3.3: Homeostasis
D4 Ecosystems
>
D4.1: Natural Selection
D4.2: Stability and Change
D4.3: Climate Change
Legacy Syllabus (2016)
>
Core
>
1: Cell Biology
>
1.1: Introduction to Cells
1.2: Ultrastructure of Cells
1.3: Membrane Structure
1.4: Membrane Transport
1.5: The Origin of Cells
1.6: Cell Division
2: Molecular Biology
>
2.1: Molecules to Metabolism
2.2: Water
2.3: Carbohydrates and Lipids
2.4: Proteins
2.5: Enzymes
2.6: DNA and RNA
2.7: DNA Replication, Transcription and Translation
2.8: Cell Respiration
2.9: Photosynthesis
3: Genetics
>
3.1: Genes
3.2: Chromosomes
3.3: Meiosis
3.4: Inheritance
3.5: Genetic Modification and Biotechnology
4: Ecology
>
4.1: Species, Communities and Ecosystems
4.2: Energy Flow
4.3: Carbon Cycling
4.4: Climate Change
5: Evolution and Biodiversity
>
5.1: Evidence for Evolution
5.2: Natural Selection
5.3: Classification and Biodiversity
5.4: Cladistics
6: Human Physiology
>
6.1: Digestion and Absorption
6.2: The Blood System
6.3: Defense Against Infectious Disease
6.4: Gas Exchange
6.5: Neurons and Synapses
6.6: Hormones, Homeostasis and Reproduction
Higher Level
>
7: Nucleic Acids
>
7.1: DNA Structure and Replication
7.2: Transcription and Gene Expression
7.3: Translation
8: Metabolism, Cell Respiration & Photosynthesis
>
8.1: Metabolism
8.2: Cell Respiration
8.3: Photosynthesis
9: Plant Biology
>
9.1: Transport in the Xylem of Plants
9.2: Transport in the Phloem of Plants
9.3: Growth in Plants
9.4: Reproduction in Plants
10: Genetics and Evolution
>
10.1: Meiosis
10.2: Inheritance
10.3: Gene Pools and Speciation
11: Animal Physiology
>
11.1: Antibody Production and Vaccination
11.2: Movement
11.3: Kidney and Osmoregulation
11.4: Sexual Reproduction
Options
>
D: Human Physiology
>
D.1: Human Nutrition
D.2: Digestion
D.3: Functions of the Liver
D.4: The Heart
D.5: Hormones and Metabolism
D.6: Transport of Respiratory Gases
Revision Tools
IB Requirements
Learner Profile
Collaborative Sciences Project
External Assessment
Internal Assessment
>
Research Design
Analysis
Conclusion
Evaluation
Extended Essay
Exam Revision
Skills for Biology
Tools
>
Experimental Techniques
>
Addressing Safety
Measuring Variables
>
Lab Drawings
Measurement Uncertainty
Techniques
>
Microscopy
Technology
>
Graphing with Excel
Mathematics
>
Statistics
>
Descriptive Statistics
>
Outliers
Skew
Measures of Central Tendancy
Measures of Spread
Pearson Correlation
Inferential Statistics
>
T-Test
ANOVA
Kruskal-Wallis
X2 Test for Independence
X2 Goodness of Fit
Graphing
>
Interpreting Error Bars
Inquiry Processes
>
Exploring & Designing
Collecting & Processing Data
>
Data Tables
Concluding & Evaluating
>
Error Analysis
SHS Course Info
Above & Beyond
>
Biology Club
Pumpkin Carving
Scavenger Hunt
Science News
Wood Duck Project (legacy)
Invasive Crayfish Project (legacy)
Assessment
>
Class Grading IB Bio I
Class Grading IB Bio II
Daily Quizzes (legacy)
Lab Practicals (legacy)
Class Photos
Recommendations
Contact
About
Philosophy
Resume
Reflection
Favorite Quotes
AEF Blog
Expeditions
Bahamas (2009)
Trinidad (2010)
Trinidad (2011)
Ecuador (2012)
Trinidad (2013)
Peru (2014)
Bahamas (2015)
Peru (2016)
Costa Rica (2017)
Costa Rica (2018)
Arizona (2022)
Florida (2023)
Belize (2024)
Costa Rica (2025)
Summer Ecology Research
Teacher Resources