BIOLOGY FOR LIFE
⭐IB Bio Syllabus⭐
Unity and Diversity (A)
>
A1 molecules
>
A1.1: Water
A1.2: Nucleic Acids
A2 Cells
>
A2.1: Origins of Cells
A2.2: Cell Structure
A2.3: Viruses
A3 Organisms
>
A3.1: Diversity of Organisms
A3.2: Classification and Cladistics
A4 Ecosystems
>
A4.1: Evolution and Speciation
A4.2: Conservation of Biodiversity
Form and Function (B)
>
B1 Molecules
>
B1.1: Carbohydrates and Lipids
B1.2: Proteins
B2 Cells
>
B2.1 Membranes and Membrane Transport
B2.2 Organelles and Compartmentalization
B2.3 Cell Specialization
B3 Organisms
>
B3.1 Gas Exchange
B3.2 Transport
B3.3 Muscle and Motility
B4 Ecosystems
>
B4.1 Adaptation to Environment
B4.2 Ecological Niches
Interaction and Interdependence (C)
>
C1 Molecules
>
C1.1: Enzymes and Metabolism
C1.2: Cell Respiration
C1.3: Photosynthesis
C2 Cells
>
C2.1: Chemical Signaling
C2.2: Neural Signaling
C3 Organisms
>
C3.1: Integration of Body Systems
C3.2: Defense Against Disease
C4 Ecosystems
>
C4.1 Populations and Communities
C4.2 Transfers of Energy and Matter
Continuity and Change (D)
>
D1 Molecules
>
D1.1: DNA Replication
D1.2: Protein Synthesis
D1.3: Mutation and Gene Editing
D2 Cells
>
D2.1: Cell and Nuclear Division
D2.2: Gene Expression
D2.3: Water Potential
D3 Organisms
>
D3.1: Reproduction
D3.2: Inheritance
D3.3: Homeostasis
D4 Ecosystems
>
D4.1: Natural Selection
D4.2: Stability and Change
D4.3: Climate Change
Legacy Syllabus (2016)
>
Core
>
1: Cell Biology
>
1.1: Introduction to Cells
1.2: Ultrastructure of Cells
1.3: Membrane Structure
1.4: Membrane Transport
1.5: The Origin of Cells
1.6: Cell Division
2: Molecular Biology
>
2.1: Molecules to Metabolism
2.2: Water
2.3: Carbohydrates and Lipids
2.4: Proteins
2.5: Enzymes
2.6: DNA and RNA
2.7: DNA Replication, Transcription and Translation
2.8: Cell Respiration
2.9: Photosynthesis
3: Genetics
>
3.1: Genes
3.2: Chromosomes
3.3: Meiosis
3.4: Inheritance
3.5: Genetic Modification and Biotechnology
4: Ecology
>
4.1: Species, Communities and Ecosystems
4.2: Energy Flow
4.3: Carbon Cycling
4.4: Climate Change
5: Evolution and Biodiversity
>
5.1: Evidence for Evolution
5.2: Natural Selection
5.3: Classification and Biodiversity
5.4: Cladistics
6: Human Physiology
>
6.1: Digestion and Absorption
6.2: The Blood System
6.3: Defense Against Infectious Disease
6.4: Gas Exchange
6.5: Neurons and Synapses
6.6: Hormones, Homeostasis and Reproduction
Higher Level
>
7: Nucleic Acids
>
7.1: DNA Structure and Replication
7.2: Transcription and Gene Expression
7.3: Translation
8: Metabolism, Cell Respiration & Photosynthesis
>
8.1: Metabolism
8.2: Cell Respiration
8.3: Photosynthesis
9: Plant Biology
>
9.1: Transport in the Xylem of Plants
9.2: Transport in the Phloem of Plants
9.3: Growth in Plants
9.4: Reproduction in Plants
10: Genetics and Evolution
>
10.1: Meiosis
10.2: Inheritance
10.3: Gene Pools and Speciation
11: Animal Physiology
>
11.1: Antibody Production and Vaccination
11.2: Movement
11.3: Kidney and Osmoregulation
11.4: Sexual Reproduction
Options
>
D: Human Physiology
>
D.1: Human Nutrition
D.2: Digestion
D.3: Functions of the Liver
D.4: The Heart
D.5: Hormones and Metabolism
D.6: Transport of Respiratory Gases
Revision Tools
IB Requirements
Learner Profile
Collaborative Sciences Project
External Assessment
Internal Assessment
>
Research Design
Analysis
Conclusion
Evaluation
Extended Essay
Exam Revision
Skills for Biology
Tools
>
Experimental Techniques
>
Addressing Safety
Measuring Variables
>
Lab Drawings
Measurement Uncertainty
Techniques
>
Microscopy
Technology
>
Graphing with Excel
Mathematics
>
Statistics
>
Descriptive Statistics
>
Outliers
Skew
Measures of Central Tendancy
Measures of Spread
Pearson Correlation
Inferential Statistics
>
T-Test
ANOVA
Kruskal-Wallis
X2 Test for Independence
X2 Goodness of Fit
Graphing
>
Interpreting Error Bars
Inquiry Processes
>
Exploring & Designing
Collecting & Processing Data
>
Data Tables
Concluding & Evaluating
>
Error Analysis
SHS Course Info
Above & Beyond
>
Biology Club
Pumpkin Carving
Scavenger Hunt
Science News
Wood Duck Project (legacy)
Invasive Crayfish Project (legacy)
Assessment
>
Class Grading IB Bio I
Class Grading IB Bio II
Daily Quizzes (legacy)
Lab Practicals (legacy)
Class Photos
Recommendations
Contact
About
Philosophy
Resume
Reflection
Favorite Quotes
AEF Blog
Expeditions
Bahamas (2009)
Trinidad (2010)
Trinidad (2011)
Ecuador (2012)
Trinidad (2013)
Peru (2014)
Bahamas (2015)
Peru (2016)
Costa Rica (2017)
Costa Rica (2018)
Arizona (2022)
Florida (2023)
Belize (2024)
Costa Rica (2025)
Summer Ecology Research
Teacher Resources
Essential Idea:
There is overwhelming evidence for the evolution of life on Earth.
Outline answer to each objective statement for topic 5.1 (coming soon)
Quizlet study set for this topic
At SHS, Topic 5.1 is taught in the following class unit(s):
Natural Selection
Examples of Selection
Adaptations to Niches through Time
Speciation
5.1.U1 Evolution occurs when heritable characteristics of species change.
Define evolution.
5.1.U2 The fossil record provides evidence for evolution.
Define strata and paleontology.
Explain three pieces of evidence that fossils provide that evolution has occurred.
5.1.U3 Selective breeding of domesticated animals shows that artificial selection can cause evolution.
Use an example to explain how selective breeding has lead to evolution in a species.
Explain the process of artificial selection using selective breeding.
5.1.U4 Evolution of homologous structures by adaptive radiation explains similarities in structure when there are differences in function.
Contrast analogous structures and homologous structures.
Contrast convergent evolution and adaptive radiation.
State an example of analogous structures.
State an example of homologous structures.
Define vestigial structure.
State an example of a vestigial structure.
5.1.U5 Populations of a species can gradually diverge into separate species by evolution.
Describe the process of gradual speciation.
5.1.U6 Continuous variation across the geographical range of related populations matches the concept of gradual divergence.
Explain how continuous variation across geographical ranges is evidence of evolutionary change.
State an example of recognizably different populations of the same species across a geographical range.
5.1.A1 Comparison of the pentadactyl limb of mammals, birds, amphibians, and reptiles with different methods of locomotion.
Define pentadactyl limb.
List the bone structures present in the pentadactyl limb.
Identify pentadactyl limb structures in diagrams of amphibians, reptiles, birds and mammals.
Relate differences in pentadactyl limb structures to differences in limb function.
5.1.A2 Development of melanistic insects in polluted areas.
Explain how natural selection leads to changes in the melanistic variety of insects in polluted areas.
5.1.NOS Looking for patterns, trends and discrepancies- there are common features in the bone structure of vertebrate limbs despite their varied use.
Propose a mechanism that explains the pattern found in vertebrate limb structure yet allows for the specialization of different limb functions.
⭐IB Bio Syllabus⭐
Unity and Diversity (A)
>
A1 molecules
>
A1.1: Water
A1.2: Nucleic Acids
A2 Cells
>
A2.1: Origins of Cells
A2.2: Cell Structure
A2.3: Viruses
A3 Organisms
>
A3.1: Diversity of Organisms
A3.2: Classification and Cladistics
A4 Ecosystems
>
A4.1: Evolution and Speciation
A4.2: Conservation of Biodiversity
Form and Function (B)
>
B1 Molecules
>
B1.1: Carbohydrates and Lipids
B1.2: Proteins
B2 Cells
>
B2.1 Membranes and Membrane Transport
B2.2 Organelles and Compartmentalization
B2.3 Cell Specialization
B3 Organisms
>
B3.1 Gas Exchange
B3.2 Transport
B3.3 Muscle and Motility
B4 Ecosystems
>
B4.1 Adaptation to Environment
B4.2 Ecological Niches
Interaction and Interdependence (C)
>
C1 Molecules
>
C1.1: Enzymes and Metabolism
C1.2: Cell Respiration
C1.3: Photosynthesis
C2 Cells
>
C2.1: Chemical Signaling
C2.2: Neural Signaling
C3 Organisms
>
C3.1: Integration of Body Systems
C3.2: Defense Against Disease
C4 Ecosystems
>
C4.1 Populations and Communities
C4.2 Transfers of Energy and Matter
Continuity and Change (D)
>
D1 Molecules
>
D1.1: DNA Replication
D1.2: Protein Synthesis
D1.3: Mutation and Gene Editing
D2 Cells
>
D2.1: Cell and Nuclear Division
D2.2: Gene Expression
D2.3: Water Potential
D3 Organisms
>
D3.1: Reproduction
D3.2: Inheritance
D3.3: Homeostasis
D4 Ecosystems
>
D4.1: Natural Selection
D4.2: Stability and Change
D4.3: Climate Change
Legacy Syllabus (2016)
>
Core
>
1: Cell Biology
>
1.1: Introduction to Cells
1.2: Ultrastructure of Cells
1.3: Membrane Structure
1.4: Membrane Transport
1.5: The Origin of Cells
1.6: Cell Division
2: Molecular Biology
>
2.1: Molecules to Metabolism
2.2: Water
2.3: Carbohydrates and Lipids
2.4: Proteins
2.5: Enzymes
2.6: DNA and RNA
2.7: DNA Replication, Transcription and Translation
2.8: Cell Respiration
2.9: Photosynthesis
3: Genetics
>
3.1: Genes
3.2: Chromosomes
3.3: Meiosis
3.4: Inheritance
3.5: Genetic Modification and Biotechnology
4: Ecology
>
4.1: Species, Communities and Ecosystems
4.2: Energy Flow
4.3: Carbon Cycling
4.4: Climate Change
5: Evolution and Biodiversity
>
5.1: Evidence for Evolution
5.2: Natural Selection
5.3: Classification and Biodiversity
5.4: Cladistics
6: Human Physiology
>
6.1: Digestion and Absorption
6.2: The Blood System
6.3: Defense Against Infectious Disease
6.4: Gas Exchange
6.5: Neurons and Synapses
6.6: Hormones, Homeostasis and Reproduction
Higher Level
>
7: Nucleic Acids
>
7.1: DNA Structure and Replication
7.2: Transcription and Gene Expression
7.3: Translation
8: Metabolism, Cell Respiration & Photosynthesis
>
8.1: Metabolism
8.2: Cell Respiration
8.3: Photosynthesis
9: Plant Biology
>
9.1: Transport in the Xylem of Plants
9.2: Transport in the Phloem of Plants
9.3: Growth in Plants
9.4: Reproduction in Plants
10: Genetics and Evolution
>
10.1: Meiosis
10.2: Inheritance
10.3: Gene Pools and Speciation
11: Animal Physiology
>
11.1: Antibody Production and Vaccination
11.2: Movement
11.3: Kidney and Osmoregulation
11.4: Sexual Reproduction
Options
>
D: Human Physiology
>
D.1: Human Nutrition
D.2: Digestion
D.3: Functions of the Liver
D.4: The Heart
D.5: Hormones and Metabolism
D.6: Transport of Respiratory Gases
Revision Tools
IB Requirements
Learner Profile
Collaborative Sciences Project
External Assessment
Internal Assessment
>
Research Design
Analysis
Conclusion
Evaluation
Extended Essay
Exam Revision
Skills for Biology
Tools
>
Experimental Techniques
>
Addressing Safety
Measuring Variables
>
Lab Drawings
Measurement Uncertainty
Techniques
>
Microscopy
Technology
>
Graphing with Excel
Mathematics
>
Statistics
>
Descriptive Statistics
>
Outliers
Skew
Measures of Central Tendancy
Measures of Spread
Pearson Correlation
Inferential Statistics
>
T-Test
ANOVA
Kruskal-Wallis
X2 Test for Independence
X2 Goodness of Fit
Graphing
>
Interpreting Error Bars
Inquiry Processes
>
Exploring & Designing
Collecting & Processing Data
>
Data Tables
Concluding & Evaluating
>
Error Analysis
SHS Course Info
Above & Beyond
>
Biology Club
Pumpkin Carving
Scavenger Hunt
Science News
Wood Duck Project (legacy)
Invasive Crayfish Project (legacy)
Assessment
>
Class Grading IB Bio I
Class Grading IB Bio II
Daily Quizzes (legacy)
Lab Practicals (legacy)
Class Photos
Recommendations
Contact
About
Philosophy
Resume
Reflection
Favorite Quotes
AEF Blog
Expeditions
Bahamas (2009)
Trinidad (2010)
Trinidad (2011)
Ecuador (2012)
Trinidad (2013)
Peru (2014)
Bahamas (2015)
Peru (2016)
Costa Rica (2017)
Costa Rica (2018)
Arizona (2022)
Florida (2023)
Belize (2024)
Costa Rica (2025)
Summer Ecology Research
Teacher Resources