BIOLOGY FOR LIFE
⭐IB Bio Syllabus⭐
Unity and Diversity (A)
>
A1 molecules
>
A1.1: Water
A1.2: Nucleic Acids
A2 Cells
>
A2.1: Origins of Cells
A2.2: Cell Structure
A2.3: Viruses
A3 Organisms
>
A3.1: Diversity of Organisms
A3.2: Classification and Cladistics
A4 Ecosystems
>
A4.1: Evolution and Speciation
A4.2: Conservation of Biodiversity
Form and Function (B)
>
B1 Molecules
>
B1.1: Carbohydrates and Lipids
B1.2: Proteins
B2 Cells
>
B2.1 Membranes and Membrane Transport
B2.2 Organelles and Compartmentalization
B2.3 Cell Specialization
B3 Organisms
>
B3.1 Gas Exchange
B3.2 Transport
B3.3 Muscle and Motility
B4 Ecosystems
>
B4.1 Adaptation to Environment
B4.2 Ecological Niches
Interaction and Interdependence (C)
>
C1 Molecules
>
C1.1: Enzymes and Metabolism
C1.2: Cell Respiration
C1.3: Photosynthesis
C2 Cells
>
C2.1: Chemical Signaling
C2.2: Neural Signaling
C3 Organisms
>
C3.1: Integration of Body Systems
C3.2: Defense Against Disease
C4 Ecosystems
>
C4.1 Populations and Communities
C4.2 Transfers of Energy and Matter
Continuity and Change (D)
>
D1 Molecules
>
D1.1: DNA Replication
D1.2: Protein Synthesis
D1.3: Mutation and Gene Editing
D2 Cells
>
D2.1: Cell and Nuclear Division
D2.2: Gene Expression
D2.3: Water Potential
D3 Organisms
>
D3.1: Reproduction
D3.2: Inheritance
D3.3: Homeostasis
D4 Ecosystems
>
D4.1: Natural Selection
D4.2: Stability and Change
D4.3: Climate Change
Legacy Syllabus (2016)
>
Core
>
1: Cell Biology
>
1.1: Introduction to Cells
1.2: Ultrastructure of Cells
1.3: Membrane Structure
1.4: Membrane Transport
1.5: The Origin of Cells
1.6: Cell Division
2: Molecular Biology
>
2.1: Molecules to Metabolism
2.2: Water
2.3: Carbohydrates and Lipids
2.4: Proteins
2.5: Enzymes
2.6: DNA and RNA
2.7: DNA Replication, Transcription and Translation
2.8: Cell Respiration
2.9: Photosynthesis
3: Genetics
>
3.1: Genes
3.2: Chromosomes
3.3: Meiosis
3.4: Inheritance
3.5: Genetic Modification and Biotechnology
4: Ecology
>
4.1: Species, Communities and Ecosystems
4.2: Energy Flow
4.3: Carbon Cycling
4.4: Climate Change
5: Evolution and Biodiversity
>
5.1: Evidence for Evolution
5.2: Natural Selection
5.3: Classification and Biodiversity
5.4: Cladistics
6: Human Physiology
>
6.1: Digestion and Absorption
6.2: The Blood System
6.3: Defense Against Infectious Disease
6.4: Gas Exchange
6.5: Neurons and Synapses
6.6: Hormones, Homeostasis and Reproduction
Higher Level
>
7: Nucleic Acids
>
7.1: DNA Structure and Replication
7.2: Transcription and Gene Expression
7.3: Translation
8: Metabolism, Cell Respiration & Photosynthesis
>
8.1: Metabolism
8.2: Cell Respiration
8.3: Photosynthesis
9: Plant Biology
>
9.1: Transport in the Xylem of Plants
9.2: Transport in the Phloem of Plants
9.3: Growth in Plants
9.4: Reproduction in Plants
10: Genetics and Evolution
>
10.1: Meiosis
10.2: Inheritance
10.3: Gene Pools and Speciation
11: Animal Physiology
>
11.1: Antibody Production and Vaccination
11.2: Movement
11.3: Kidney and Osmoregulation
11.4: Sexual Reproduction
Options
>
D: Human Physiology
>
D.1: Human Nutrition
D.2: Digestion
D.3: Functions of the Liver
D.4: The Heart
D.5: Hormones and Metabolism
D.6: Transport of Respiratory Gases
IB Requirements
Learner Profile
Collaborative Sciences Project
External Assessment
Internal Assessment
>
Research Design
Analysis
Conclusion
Evaluation
Extended Essay
Exam Revision
Revision Tools
Skills for Biology
Tools
>
Experimental Techniques
>
Addressing Safety
Measuring Variables
>
Lab Drawings
Measurement Uncertainty
Techniques
>
Microscopy
Technology
>
Graphing with Excel
Mathematics
>
Statistics
>
Glossary of Statistic Terms and Equations
Descriptive Statistics
>
Skew and the Normal Distribution
Outliers
Measures of Central Tendancy
Measures of Spread
Pearson Correlation
Inferential Statistics
>
T-Test
ANOVA
Kruskal-Wallis
X2 Test for Independence
X2 Goodness of Fit
Graphing
>
Interpreting Error Bars
Inquiry Processes
>
Exploring & Designing
>
Research Questions
Hypotheses and Predictions
Varaibles
Sampling
Collecting & Processing Data
>
Data Tables
Concluding & Evaluating
>
Error Analysis
SHS Course Info
Above & Beyond
>
Biology Club
Pumpkin Carving
Scavenger Hunt
Science News
Wood Duck Project (legacy)
Invasive Crayfish Project (legacy)
Assessment
>
Class Grading IB Bio I
Class Grading IB Bio II
Daily Quizzes (legacy)
Lab Practicals (legacy)
Class Photos
Recommendations
Contact
About
Philosophy
Resume
Reflection
Favorite Quotes
AEF Blog
Expeditions
Bahamas (2009)
Trinidad (2010)
Trinidad (2011)
Ecuador (2012)
Trinidad (2013)
Peru (2014)
Bahamas (2015)
Peru (2016)
Costa Rica (2017)
Costa Rica (2018)
Arizona (2022)
Florida (2023)
Belize (2024)
Costa Rica (2025)
Summer Ecology Research
Teacher Resources
Essential Idea:
Cell respiration supplies energy for the functions of life.
Outline answer to each objective statement for topic 2.8 (coming soon)
Quizlet study set for this topic
At SHS, Topic 2.8 is taught in the following class unit(s):
Anaerobic Respiration
Aerobic Respiration
2.8.U1 Cell respiration is the controlled release of energy from organic compounds to produce ATP.
Define “cell respiration.”
State the reaction for cellular respiration.
State the types of organic compounds used in cellular respiration by animals and plants.
2.8.U2 ATP from cell respiration is immediately available as a source of energy in the cell.
State three example uses of cellular energy.
Outline energy transfer in the formation and use of ATP.
State three reasons why cellular respiration must be continuously performed by all cells.
2.8.U3 Anaerobic cell respiration gives a small yield of ATP from glucose.
Define “anaerobic respiration”
List three situations in which anaerobic respiration is useful.
Compare anaerobic respiration in yeasts and humans.
2.8.U4 Aerobic cell respiration requires oxygen and gives a large yield of ATP from glucose.
Compare the total amount of ATP made from anaerobic and aerobic respiration.
S
tate the location of aerobic respiration.
2.8.A1 Use of anaerobic cell respiration in yeasts to produce ethanol and carbon dioxide in baking.
Outline how anaerobic respiration in yeast is used in baking.
Outline how anaerobic respiration in yeast is used in ethanol production.
2.8.A2 Lactate production in humans when anaerobic respiration is used to maximize the power of muscle contractions.
State the condition in which humans would perform anaerobic respiration.
Outline production of lactate in humans during anaerobic respiration.
2.8.S1 Analysis of results from experiments involving measurement of respiration rates in germinating seeds or invertebrates using a respirometer.
Outline the use of a respirometer to measure cellular respiration rate.
2.8.NOS Assessing the ethics of scientific research- the use of invertebrates in respirometers experiments.
List ethical questions that must be considered before using animals in experiments.
⭐IB Bio Syllabus⭐
Unity and Diversity (A)
>
A1 molecules
>
A1.1: Water
A1.2: Nucleic Acids
A2 Cells
>
A2.1: Origins of Cells
A2.2: Cell Structure
A2.3: Viruses
A3 Organisms
>
A3.1: Diversity of Organisms
A3.2: Classification and Cladistics
A4 Ecosystems
>
A4.1: Evolution and Speciation
A4.2: Conservation of Biodiversity
Form and Function (B)
>
B1 Molecules
>
B1.1: Carbohydrates and Lipids
B1.2: Proteins
B2 Cells
>
B2.1 Membranes and Membrane Transport
B2.2 Organelles and Compartmentalization
B2.3 Cell Specialization
B3 Organisms
>
B3.1 Gas Exchange
B3.2 Transport
B3.3 Muscle and Motility
B4 Ecosystems
>
B4.1 Adaptation to Environment
B4.2 Ecological Niches
Interaction and Interdependence (C)
>
C1 Molecules
>
C1.1: Enzymes and Metabolism
C1.2: Cell Respiration
C1.3: Photosynthesis
C2 Cells
>
C2.1: Chemical Signaling
C2.2: Neural Signaling
C3 Organisms
>
C3.1: Integration of Body Systems
C3.2: Defense Against Disease
C4 Ecosystems
>
C4.1 Populations and Communities
C4.2 Transfers of Energy and Matter
Continuity and Change (D)
>
D1 Molecules
>
D1.1: DNA Replication
D1.2: Protein Synthesis
D1.3: Mutation and Gene Editing
D2 Cells
>
D2.1: Cell and Nuclear Division
D2.2: Gene Expression
D2.3: Water Potential
D3 Organisms
>
D3.1: Reproduction
D3.2: Inheritance
D3.3: Homeostasis
D4 Ecosystems
>
D4.1: Natural Selection
D4.2: Stability and Change
D4.3: Climate Change
Legacy Syllabus (2016)
>
Core
>
1: Cell Biology
>
1.1: Introduction to Cells
1.2: Ultrastructure of Cells
1.3: Membrane Structure
1.4: Membrane Transport
1.5: The Origin of Cells
1.6: Cell Division
2: Molecular Biology
>
2.1: Molecules to Metabolism
2.2: Water
2.3: Carbohydrates and Lipids
2.4: Proteins
2.5: Enzymes
2.6: DNA and RNA
2.7: DNA Replication, Transcription and Translation
2.8: Cell Respiration
2.9: Photosynthesis
3: Genetics
>
3.1: Genes
3.2: Chromosomes
3.3: Meiosis
3.4: Inheritance
3.5: Genetic Modification and Biotechnology
4: Ecology
>
4.1: Species, Communities and Ecosystems
4.2: Energy Flow
4.3: Carbon Cycling
4.4: Climate Change
5: Evolution and Biodiversity
>
5.1: Evidence for Evolution
5.2: Natural Selection
5.3: Classification and Biodiversity
5.4: Cladistics
6: Human Physiology
>
6.1: Digestion and Absorption
6.2: The Blood System
6.3: Defense Against Infectious Disease
6.4: Gas Exchange
6.5: Neurons and Synapses
6.6: Hormones, Homeostasis and Reproduction
Higher Level
>
7: Nucleic Acids
>
7.1: DNA Structure and Replication
7.2: Transcription and Gene Expression
7.3: Translation
8: Metabolism, Cell Respiration & Photosynthesis
>
8.1: Metabolism
8.2: Cell Respiration
8.3: Photosynthesis
9: Plant Biology
>
9.1: Transport in the Xylem of Plants
9.2: Transport in the Phloem of Plants
9.3: Growth in Plants
9.4: Reproduction in Plants
10: Genetics and Evolution
>
10.1: Meiosis
10.2: Inheritance
10.3: Gene Pools and Speciation
11: Animal Physiology
>
11.1: Antibody Production and Vaccination
11.2: Movement
11.3: Kidney and Osmoregulation
11.4: Sexual Reproduction
Options
>
D: Human Physiology
>
D.1: Human Nutrition
D.2: Digestion
D.3: Functions of the Liver
D.4: The Heart
D.5: Hormones and Metabolism
D.6: Transport of Respiratory Gases
IB Requirements
Learner Profile
Collaborative Sciences Project
External Assessment
Internal Assessment
>
Research Design
Analysis
Conclusion
Evaluation
Extended Essay
Exam Revision
Revision Tools
Skills for Biology
Tools
>
Experimental Techniques
>
Addressing Safety
Measuring Variables
>
Lab Drawings
Measurement Uncertainty
Techniques
>
Microscopy
Technology
>
Graphing with Excel
Mathematics
>
Statistics
>
Glossary of Statistic Terms and Equations
Descriptive Statistics
>
Skew and the Normal Distribution
Outliers
Measures of Central Tendancy
Measures of Spread
Pearson Correlation
Inferential Statistics
>
T-Test
ANOVA
Kruskal-Wallis
X2 Test for Independence
X2 Goodness of Fit
Graphing
>
Interpreting Error Bars
Inquiry Processes
>
Exploring & Designing
>
Research Questions
Hypotheses and Predictions
Varaibles
Sampling
Collecting & Processing Data
>
Data Tables
Concluding & Evaluating
>
Error Analysis
SHS Course Info
Above & Beyond
>
Biology Club
Pumpkin Carving
Scavenger Hunt
Science News
Wood Duck Project (legacy)
Invasive Crayfish Project (legacy)
Assessment
>
Class Grading IB Bio I
Class Grading IB Bio II
Daily Quizzes (legacy)
Lab Practicals (legacy)
Class Photos
Recommendations
Contact
About
Philosophy
Resume
Reflection
Favorite Quotes
AEF Blog
Expeditions
Bahamas (2009)
Trinidad (2010)
Trinidad (2011)
Ecuador (2012)
Trinidad (2013)
Peru (2014)
Bahamas (2015)
Peru (2016)
Costa Rica (2017)
Costa Rica (2018)
Arizona (2022)
Florida (2023)
Belize (2024)
Costa Rica (2025)
Summer Ecology Research
Teacher Resources