BIOLOGY FOR LIFE
  • ⭐IB Bio Syllabus⭐
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
    • Legacy Syllabus (2016) >
      • Core >
        • 1: Cell Biology >
          • 1.1: Introduction to Cells
          • 1.2: Ultrastructure of Cells
          • 1.3: Membrane Structure
          • 1.4: Membrane Transport
          • 1.5: The Origin of Cells
          • 1.6: Cell Division
        • 2: Molecular Biology >
          • 2.1: Molecules to Metabolism
          • 2.2: Water
          • 2.3: Carbohydrates and Lipids
          • 2.4: Proteins
          • 2.5: Enzymes
          • 2.6: DNA and RNA
          • 2.7: DNA Replication, Transcription and Translation
          • 2.8: Cell Respiration
          • 2.9: Photosynthesis
        • 3: Genetics >
          • 3.1: Genes
          • 3.2: Chromosomes
          • 3.3: Meiosis
          • 3.4: Inheritance
          • 3.5: Genetic Modification and Biotechnology
        • 4: Ecology >
          • 4.1: Species, Communities and Ecosystems
          • 4.2: Energy Flow
          • 4.3: Carbon Cycling
          • 4.4: Climate Change
        • 5: Evolution and Biodiversity >
          • 5.1: Evidence for Evolution
          • 5.2: Natural Selection
          • 5.3: Classification and Biodiversity
          • 5.4: Cladistics
        • 6: Human Physiology >
          • 6.1: Digestion and Absorption
          • 6.2: The Blood System
          • 6.3: Defense Against Infectious Disease
          • 6.4: Gas Exchange
          • 6.5: Neurons and Synapses
          • 6.6: Hormones, Homeostasis and Reproduction
      • Higher Level >
        • 7: Nucleic Acids >
          • 7.1: DNA Structure and Replication
          • 7.2: Transcription and Gene Expression
          • 7.3: Translation
        • 8: Metabolism, Cell Respiration & Photosynthesis >
          • 8.1: Metabolism
          • 8.2: Cell Respiration
          • 8.3: Photosynthesis
        • 9: Plant Biology >
          • 9.1: Transport in the Xylem of Plants
          • 9.2: Transport in the Phloem of Plants
          • 9.3: Growth in Plants
          • 9.4: Reproduction in Plants
        • 10: Genetics and Evolution >
          • 10.1: Meiosis
          • 10.2: Inheritance
          • 10.3: Gene Pools and Speciation
        • 11: Animal Physiology >
          • 11.1: Antibody Production and Vaccination
          • 11.2: Movement
          • 11.3: Kidney and Osmoregulation
          • 11.4: Sexual Reproduction
      • Options >
        • D: Human Physiology >
          • D.1: Human Nutrition
          • D.2: Digestion
          • D.3: Functions of the Liver
          • D.4: The Heart
          • D.5: Hormones and Metabolism
          • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Collaborative Sciences Project
    • External Assessment
    • Internal Assessment >
      • Research Design
      • Analysis
      • Conclusion
      • Evaluation
    • Extended Essay
  • Exam Revision
    • Revision Tools
  • Skills for Biology
    • Tools >
      • Experimental Techniques >
        • Addressing Safety
        • Measuring Variables >
          • Lab Drawings
          • Measurement Uncertainty
        • Techniques >
          • Microscopy
      • Technology >
        • Graphing with Excel
      • Mathematics >
        • Statistics >
          • Glossary of Statistic Terms and Equations
          • Descriptive Statistics >
            • Skew and the Normal Distribution
            • Outliers
            • Measures of Central Tendancy
            • Measures of Spread
            • Pearson Correlation
          • Inferential Statistics >
            • T-Test
            • ANOVA
            • Kruskal-Wallis
            • X2 Test for Independence
            • X2 Goodness of Fit
        • Graphing >
          • Interpreting Error Bars
    • Inquiry Processes >
      • Exploring & Designing >
        • Research Questions
        • Hypotheses and Predictions
        • Varaibles
        • Sampling
      • Collecting & Processing Data >
        • Data Tables
      • Concluding & Evaluating >
        • Error Analysis
  • SHS Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • Wood Duck Project (legacy)
      • Invasive Crayfish Project (legacy)
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes (legacy)
      • Lab Practicals (legacy)
    • Class Photos
    • Recommendations
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
    • Belize (2024)
    • Costa Rica (2025)
  • Summer Ecology Research
  • Teacher Resources

Internal Assessment Conclusion

This criterion assesses the extent to which the student successfully answers their research question with regard to their analysis and the accepted scientific context.
  • Click for the summary of IB internal assessment requirements.
  • ​Click for a printable score sheet
Picture
Command terms indicate the depth of treatment required to earn the different marks.  
  • State:  Give a specific name, value or other brief answer without explanation or calculation.
  • ​Describe: Give a detailed account.
  • Justify:  Give valid reasons or evidence to support an answer or conclusion.

CONCLUSION
A conclusion that is fully consistent requires the interpretation of processed data including associated uncertainties.

Conclusion Statement
Check list:
  • State the most important outcome of the investigation
  • The conclusion refers back to the research question
  • The conclusion avoids being too definitive or over-generalizing
  • The extent to which the hypothesis is supported by the data is explained
  • Avoid reference to “proof” of “proves” 

Consistency with Analysis
Check list:
  • The need/importance/relevance of the research question is clear 
  • The conclusion is correct and clearly supported by the interpretation of the data
  • Key data from the analysis is given and trends in the data are discussed​

SCIENTIFIC CONTEXT
Scientific context refers to information that could come from published material (paper or online), published values, course notes, textbooks or other outside sources. The citation of published materials must be sufficiently detailed to allow these sources to be traceable.

Scientific Context
Check list:
  • Scientific explanation for the results is described
  • Comparison is made with published data and theoretical texts (with citations)
  • Evidence from published material is utilized for comparison
I give many of my IB Biology resources away, for the benefit of students and teachers around the world. 
If you've found the materials helpful, please consider making a contribution of any amount
to this Earthwatch Expedition Fund or donating a puzzle to our classroom from our wish list.


​Did I forget something?  Know of a mistake? Have a suggestion?  Let me know by emailing me here.

Before using any of the files available on this site,
​please familiarize yourself with the 
Creative Commons Attribution License. 
​​​It prohibits the use of any material on this site for commercial  purposes of any kind.  ​
​
Picture
  • ⭐IB Bio Syllabus⭐
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
    • Legacy Syllabus (2016) >
      • Core >
        • 1: Cell Biology >
          • 1.1: Introduction to Cells
          • 1.2: Ultrastructure of Cells
          • 1.3: Membrane Structure
          • 1.4: Membrane Transport
          • 1.5: The Origin of Cells
          • 1.6: Cell Division
        • 2: Molecular Biology >
          • 2.1: Molecules to Metabolism
          • 2.2: Water
          • 2.3: Carbohydrates and Lipids
          • 2.4: Proteins
          • 2.5: Enzymes
          • 2.6: DNA and RNA
          • 2.7: DNA Replication, Transcription and Translation
          • 2.8: Cell Respiration
          • 2.9: Photosynthesis
        • 3: Genetics >
          • 3.1: Genes
          • 3.2: Chromosomes
          • 3.3: Meiosis
          • 3.4: Inheritance
          • 3.5: Genetic Modification and Biotechnology
        • 4: Ecology >
          • 4.1: Species, Communities and Ecosystems
          • 4.2: Energy Flow
          • 4.3: Carbon Cycling
          • 4.4: Climate Change
        • 5: Evolution and Biodiversity >
          • 5.1: Evidence for Evolution
          • 5.2: Natural Selection
          • 5.3: Classification and Biodiversity
          • 5.4: Cladistics
        • 6: Human Physiology >
          • 6.1: Digestion and Absorption
          • 6.2: The Blood System
          • 6.3: Defense Against Infectious Disease
          • 6.4: Gas Exchange
          • 6.5: Neurons and Synapses
          • 6.6: Hormones, Homeostasis and Reproduction
      • Higher Level >
        • 7: Nucleic Acids >
          • 7.1: DNA Structure and Replication
          • 7.2: Transcription and Gene Expression
          • 7.3: Translation
        • 8: Metabolism, Cell Respiration & Photosynthesis >
          • 8.1: Metabolism
          • 8.2: Cell Respiration
          • 8.3: Photosynthesis
        • 9: Plant Biology >
          • 9.1: Transport in the Xylem of Plants
          • 9.2: Transport in the Phloem of Plants
          • 9.3: Growth in Plants
          • 9.4: Reproduction in Plants
        • 10: Genetics and Evolution >
          • 10.1: Meiosis
          • 10.2: Inheritance
          • 10.3: Gene Pools and Speciation
        • 11: Animal Physiology >
          • 11.1: Antibody Production and Vaccination
          • 11.2: Movement
          • 11.3: Kidney and Osmoregulation
          • 11.4: Sexual Reproduction
      • Options >
        • D: Human Physiology >
          • D.1: Human Nutrition
          • D.2: Digestion
          • D.3: Functions of the Liver
          • D.4: The Heart
          • D.5: Hormones and Metabolism
          • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Collaborative Sciences Project
    • External Assessment
    • Internal Assessment >
      • Research Design
      • Analysis
      • Conclusion
      • Evaluation
    • Extended Essay
  • Exam Revision
    • Revision Tools
  • Skills for Biology
    • Tools >
      • Experimental Techniques >
        • Addressing Safety
        • Measuring Variables >
          • Lab Drawings
          • Measurement Uncertainty
        • Techniques >
          • Microscopy
      • Technology >
        • Graphing with Excel
      • Mathematics >
        • Statistics >
          • Glossary of Statistic Terms and Equations
          • Descriptive Statistics >
            • Skew and the Normal Distribution
            • Outliers
            • Measures of Central Tendancy
            • Measures of Spread
            • Pearson Correlation
          • Inferential Statistics >
            • T-Test
            • ANOVA
            • Kruskal-Wallis
            • X2 Test for Independence
            • X2 Goodness of Fit
        • Graphing >
          • Interpreting Error Bars
    • Inquiry Processes >
      • Exploring & Designing >
        • Research Questions
        • Hypotheses and Predictions
        • Varaibles
        • Sampling
      • Collecting & Processing Data >
        • Data Tables
      • Concluding & Evaluating >
        • Error Analysis
  • SHS Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • Wood Duck Project (legacy)
      • Invasive Crayfish Project (legacy)
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes (legacy)
      • Lab Practicals (legacy)
    • Class Photos
    • Recommendations
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
    • Belize (2024)
    • Costa Rica (2025)
  • Summer Ecology Research
  • Teacher Resources