BIOLOGY FOR LIFE
  • ⭐IB Bio Syllabus⭐
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
    • Legacy Syllabus (2016) >
      • Core >
        • 1: Cell Biology >
          • 1.1: Introduction to Cells
          • 1.2: Ultrastructure of Cells
          • 1.3: Membrane Structure
          • 1.4: Membrane Transport
          • 1.5: The Origin of Cells
          • 1.6: Cell Division
        • 2: Molecular Biology >
          • 2.1: Molecules to Metabolism
          • 2.2: Water
          • 2.3: Carbohydrates and Lipids
          • 2.4: Proteins
          • 2.5: Enzymes
          • 2.6: DNA and RNA
          • 2.7: DNA Replication, Transcription and Translation
          • 2.8: Cell Respiration
          • 2.9: Photosynthesis
        • 3: Genetics >
          • 3.1: Genes
          • 3.2: Chromosomes
          • 3.3: Meiosis
          • 3.4: Inheritance
          • 3.5: Genetic Modification and Biotechnology
        • 4: Ecology >
          • 4.1: Species, Communities and Ecosystems
          • 4.2: Energy Flow
          • 4.3: Carbon Cycling
          • 4.4: Climate Change
        • 5: Evolution and Biodiversity >
          • 5.1: Evidence for Evolution
          • 5.2: Natural Selection
          • 5.3: Classification and Biodiversity
          • 5.4: Cladistics
        • 6: Human Physiology >
          • 6.1: Digestion and Absorption
          • 6.2: The Blood System
          • 6.3: Defense Against Infectious Disease
          • 6.4: Gas Exchange
          • 6.5: Neurons and Synapses
          • 6.6: Hormones, Homeostasis and Reproduction
      • Higher Level >
        • 7: Nucleic Acids >
          • 7.1: DNA Structure and Replication
          • 7.2: Transcription and Gene Expression
          • 7.3: Translation
        • 8: Metabolism, Cell Respiration & Photosynthesis >
          • 8.1: Metabolism
          • 8.2: Cell Respiration
          • 8.3: Photosynthesis
        • 9: Plant Biology >
          • 9.1: Transport in the Xylem of Plants
          • 9.2: Transport in the Phloem of Plants
          • 9.3: Growth in Plants
          • 9.4: Reproduction in Plants
        • 10: Genetics and Evolution >
          • 10.1: Meiosis
          • 10.2: Inheritance
          • 10.3: Gene Pools and Speciation
        • 11: Animal Physiology >
          • 11.1: Antibody Production and Vaccination
          • 11.2: Movement
          • 11.3: Kidney and Osmoregulation
          • 11.4: Sexual Reproduction
      • Options >
        • D: Human Physiology >
          • D.1: Human Nutrition
          • D.2: Digestion
          • D.3: Functions of the Liver
          • D.4: The Heart
          • D.5: Hormones and Metabolism
          • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Collaborative Sciences Project
    • External Assessment
    • Internal Assessment >
      • Research Design
      • Analysis
      • Conclusion
      • Evaluation
    • Extended Essay
  • Exam Revision
    • Revision Tools
  • Skills for Biology
    • Tools >
      • Experimental Techniques >
        • Addressing Safety
        • Measuring Variables >
          • Lab Drawings
          • Measurement Uncertainty
        • Techniques >
          • Microscopy
      • Technology >
        • Graphing with Excel
      • Mathematics >
        • Statistics >
          • Glossary of Statistic Terms and Equations
          • Descriptive Statistics >
            • Skew and the Normal Distribution
            • Outliers
            • Measures of Central Tendancy
            • Measures of Spread
            • Pearson Correlation
          • Inferential Statistics >
            • T-Test
            • ANOVA
            • Kruskal-Wallis
            • X2 Test for Independence
            • X2 Goodness of Fit
        • Graphing >
          • Interpreting Error Bars
    • Inquiry Processes >
      • Exploring & Designing >
        • Research Questions
        • Hypotheses and Predictions
        • Varaibles
        • Sampling
      • Collecting & Processing Data >
        • Data Tables
      • Concluding & Evaluating >
        • Error Analysis
  • SHS Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • Wood Duck Project (legacy)
      • Invasive Crayfish Project (legacy)
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes (legacy)
      • Lab Practicals (legacy)
    • Class Photos
    • Recommendations
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
    • Belize (2024)
    • Costa Rica (2025)
  • Summer Ecology Research
  • Teacher Resources

Loving Library Learning

7/1/2018

 
Last December, the Albert Einstein Fellows had the opportunity to learn about primary source materials,rare book conservation and preservation science at the Library of Congress (LOC).  We spent a full day learning about the history of the Library, touring the incredible Jefferson building and exploring behind the scenes of the library. The Library was established in 1800 by Congress, however just 14 years later the capital was burned and the library collection was lost.  Thomas Jefferson offered his personal library collection as a replacement. Since 1870 and the advent of the copyright laws, the library has received at least two copies of all copyrighted materials from the United States and around the globe. About fifteen-thousands of new items (books, maps, music, photos, prints, sounds, movies, manuscripts) are added to the collection each day, and there are now over 150 million items!  The Library of Congress is the largest, safest library in the world.
Picture
The paper preservation lab at the Library of Congress
Picture
Many records are still stored in card catalogs at the Library of Congress!
Picture
I was excited to see a first edition of "On the Origin of Species"
I was mesmerized and knew immediately that I wanted to spend a week at the Library of Congress Summer Teacher Institute learning why and how to incorporate primary sources into classroom instruction. I attended the Institute this past week and my already high expectations were surpassed!  Spending a week learning about the use of primary sources with teachers of all grades from around our nation was invigorating, academically stimulating and quite fun!  
Picture
My reflection card at the end of day 1 of the LOC Summer Teacher Institute.
Picture
Benefits of using primary sources in the classroom.
Picture
Ideas for how to incorporate a primary resource lesson into our classrooms.
Picture
Map of participants in our week at the LOC Summer Teacher Institute.
We were able to participate in lessons as if we were students and then had time to reflect and discuss how we would use and/or adapt the instructional activities in our classrooms.  I loved that teachers of students of all grades were able to collaborate and share ideas for modifying lessons. I was the only science teacher of the bunch, which actually was a benefit as I was able to expand my understanding of pedagogical methods traditionally only used in humanities courses.    
Picture
Examining multiple perspectives on historical events.
Picture
Using primary sources to discuss the US entry into WWI.
Throughout the week, emphasis was placed on primary source analysis skills. Learning how to teach students how to examine primary sources (for example photographs, diary entries and newspapers) using a “see, think, wonder” approach.  We learned and practiced strategies for considering different perspectives and modeled how historians examine sources. There was emphasis on how primary sources can be used to have students construct their own knowledge, deepen understanding of textbook material and support learning of reading and writing skills.
Picture
Feedback from role play sessions, using the primary source analysis tool.
The Library of Congress has a rich collection of digital resources available for public access.  Not only did we learn strategies for searching primary sources on loc.gov, but we had the opportunity to attend an “open house” during which time subject matter experts from the various library divisions were accessible for sharing their resources and collections highlights with the teachers.
Picture
At the open house, learning about resources available for the blind and physically disabled.
Teachers in the Institute were asked to develop a primary source activity plan; a lesson that we will use with students that incorporates the use of primary sources and analysis tools we learned about during the week. There was time each day dedicated towards finding primary resources relevant towards our student and content speciacialties, culminating in a “Gallery Walk and Talk” during which time we shared our lesson ideas.  I focused on using primary sources related to our understanding of the relationship between smoking and cancer.  In the lesson, students examine a variety of primary and secondary sources related to the science, marketing and public policy of cigarette smoking.  Students will use the LOC Primary Source Analysis tool to examine an artifact and then classify the artifacts as either “pro,” “con,” or “neutral” of smoking.  Then, students will place the artifact on a graph depicting the per capita number of cigarettes smoked per year. Observation, trends and the role of science in public policy will be discussed.
Picture
Here I am presenting my lesson!
Picture
Feedback from other teachers about my lesson!
The Institute ended with a discussion about the opportunities and strategies for sharing Library of Congress resources with colleagues.  I hope I have the opportunity to share these resources with other teachers in my school, district and state once I am back in the "other Washington" this fall!
Picture
    Picture

    Author

    I’m Gretel von Bargen and I was an Einstein Fellow in the Department of Energy, Office of Science.  During my fellowship year (2017-2018) I worked within the Workforce Development for Teachers and Scientists (WDTS) office.  Aligned with the goals of the WDTS office, I am committed towards creating a sustained pipeline of skilled science, technology, engineering and math (STEM) workers and teachers. As a dedicated STEM educator, I work to develop my students understanding and appreciation for the nature of science and the natural world.  In addition to the important work I did related to the National Science Bowl, I had three goals for my Fellowship year.  First, I was looking to build relationships and connections between the scientific and education communities, aiming for increased opportunity for high school students to gain authentic experiences with practicing scientists.  Second, I wanted to deepen my understanding of the complexities of the national STEM teacher shortage, specifically exploring the role active classroom teachers play in communicating the joys and challenges of a STEM teaching career.  Third, I was looking to broaden my own scientific content knowledge so that students benefit from an added depth, breadth and interdisciplinary connections in future lessons. 

    Viewpoints are my own and not representative of the Fellowship Program or the agency in which I was placed.  ​​

    Archives

    July 2018
    June 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017

I give many of my IB Biology resources away, for the benefit of students and teachers around the world. 
If you've found the materials helpful, please consider making a contribution of any amount
to this Earthwatch Expedition Fund or donating a puzzle to our classroom from our wish list.


​Did I forget something?  Know of a mistake? Have a suggestion?  Let me know by emailing me here.

Before using any of the files available on this site,
​please familiarize yourself with the 
Creative Commons Attribution License. 
​​​It prohibits the use of any material on this site for commercial  purposes of any kind.  ​
​
Picture
  • ⭐IB Bio Syllabus⭐
    • Unity and Diversity (A) >
      • A1 molecules >
        • A1.1: Water
        • A1.2: Nucleic Acids
      • A2 Cells >
        • A2.1: Origins of Cells
        • A2.2: Cell Structure
        • A2.3: Viruses
      • A3 Organisms >
        • A3.1: Diversity of Organisms
        • A3.2: Classification and Cladistics
      • A4 Ecosystems >
        • A4.1: Evolution and Speciation
        • A4.2: Conservation of Biodiversity
    • Form and Function (B) >
      • B1 Molecules >
        • B1.1: Carbohydrates and Lipids
        • B1.2: Proteins
      • B2 Cells >
        • B2.1 Membranes and Membrane Transport
        • B2.2 Organelles and Compartmentalization
        • B2.3 Cell Specialization
      • B3 Organisms >
        • B3.1 Gas Exchange
        • B3.2 Transport
        • B3.3 Muscle and Motility
      • B4 Ecosystems >
        • B4.1 Adaptation to Environment
        • B4.2 Ecological Niches
    • Interaction and Interdependence (C) >
      • C1 Molecules >
        • C1.1: Enzymes and Metabolism
        • C1.2: Cell Respiration
        • C1.3: Photosynthesis
      • C2 Cells >
        • C2.1: Chemical Signaling
        • C2.2: Neural Signaling
      • C3 Organisms >
        • C3.1: Integration of Body Systems
        • C3.2: Defense Against Disease
      • C4 Ecosystems >
        • C4.1 Populations and Communities
        • C4.2 Transfers of Energy and Matter
    • Continuity and Change (D) >
      • D1 Molecules >
        • D1.1: DNA Replication
        • D1.2: Protein Synthesis
        • D1.3: Mutation and Gene Editing
      • D2 Cells >
        • D2.1: Cell and Nuclear Division
        • D2.2: Gene Expression
        • D2.3: Water Potential
      • D3 Organisms >
        • D3.1: Reproduction
        • D3.2: Inheritance
        • D3.3: Homeostasis
      • D4 Ecosystems >
        • D4.1: Natural Selection
        • D4.2: Stability and Change
        • D4.3: Climate Change
    • Legacy Syllabus (2016) >
      • Core >
        • 1: Cell Biology >
          • 1.1: Introduction to Cells
          • 1.2: Ultrastructure of Cells
          • 1.3: Membrane Structure
          • 1.4: Membrane Transport
          • 1.5: The Origin of Cells
          • 1.6: Cell Division
        • 2: Molecular Biology >
          • 2.1: Molecules to Metabolism
          • 2.2: Water
          • 2.3: Carbohydrates and Lipids
          • 2.4: Proteins
          • 2.5: Enzymes
          • 2.6: DNA and RNA
          • 2.7: DNA Replication, Transcription and Translation
          • 2.8: Cell Respiration
          • 2.9: Photosynthesis
        • 3: Genetics >
          • 3.1: Genes
          • 3.2: Chromosomes
          • 3.3: Meiosis
          • 3.4: Inheritance
          • 3.5: Genetic Modification and Biotechnology
        • 4: Ecology >
          • 4.1: Species, Communities and Ecosystems
          • 4.2: Energy Flow
          • 4.3: Carbon Cycling
          • 4.4: Climate Change
        • 5: Evolution and Biodiversity >
          • 5.1: Evidence for Evolution
          • 5.2: Natural Selection
          • 5.3: Classification and Biodiversity
          • 5.4: Cladistics
        • 6: Human Physiology >
          • 6.1: Digestion and Absorption
          • 6.2: The Blood System
          • 6.3: Defense Against Infectious Disease
          • 6.4: Gas Exchange
          • 6.5: Neurons and Synapses
          • 6.6: Hormones, Homeostasis and Reproduction
      • Higher Level >
        • 7: Nucleic Acids >
          • 7.1: DNA Structure and Replication
          • 7.2: Transcription and Gene Expression
          • 7.3: Translation
        • 8: Metabolism, Cell Respiration & Photosynthesis >
          • 8.1: Metabolism
          • 8.2: Cell Respiration
          • 8.3: Photosynthesis
        • 9: Plant Biology >
          • 9.1: Transport in the Xylem of Plants
          • 9.2: Transport in the Phloem of Plants
          • 9.3: Growth in Plants
          • 9.4: Reproduction in Plants
        • 10: Genetics and Evolution >
          • 10.1: Meiosis
          • 10.2: Inheritance
          • 10.3: Gene Pools and Speciation
        • 11: Animal Physiology >
          • 11.1: Antibody Production and Vaccination
          • 11.2: Movement
          • 11.3: Kidney and Osmoregulation
          • 11.4: Sexual Reproduction
      • Options >
        • D: Human Physiology >
          • D.1: Human Nutrition
          • D.2: Digestion
          • D.3: Functions of the Liver
          • D.4: The Heart
          • D.5: Hormones and Metabolism
          • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Collaborative Sciences Project
    • External Assessment
    • Internal Assessment >
      • Research Design
      • Analysis
      • Conclusion
      • Evaluation
    • Extended Essay
  • Exam Revision
    • Revision Tools
  • Skills for Biology
    • Tools >
      • Experimental Techniques >
        • Addressing Safety
        • Measuring Variables >
          • Lab Drawings
          • Measurement Uncertainty
        • Techniques >
          • Microscopy
      • Technology >
        • Graphing with Excel
      • Mathematics >
        • Statistics >
          • Glossary of Statistic Terms and Equations
          • Descriptive Statistics >
            • Skew and the Normal Distribution
            • Outliers
            • Measures of Central Tendancy
            • Measures of Spread
            • Pearson Correlation
          • Inferential Statistics >
            • T-Test
            • ANOVA
            • Kruskal-Wallis
            • X2 Test for Independence
            • X2 Goodness of Fit
        • Graphing >
          • Interpreting Error Bars
    • Inquiry Processes >
      • Exploring & Designing >
        • Research Questions
        • Hypotheses and Predictions
        • Varaibles
        • Sampling
      • Collecting & Processing Data >
        • Data Tables
      • Concluding & Evaluating >
        • Error Analysis
  • SHS Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • Wood Duck Project (legacy)
      • Invasive Crayfish Project (legacy)
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes (legacy)
      • Lab Practicals (legacy)
    • Class Photos
    • Recommendations
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
    • Belize (2024)
    • Costa Rica (2025)
  • Summer Ecology Research
  • Teacher Resources