BIOLOGY FOR LIFE
  • Syllabus
    • Core >
      • 1: Cell Biology >
        • 1.1: Introduction to Cells
        • 1.2: Ultrastructure of Cells
        • 1.3: Membrane Structure
        • 1.4: Membrane Transport
        • 1.5: The Origin of Cells
        • 1.6: Cell Division
      • 2: Molecular Biology >
        • 2.1: Molecules to Metabolism
        • 2.2: Water
        • 2.3: Carbohydrates and Lipids
        • 2.4: Proteins
        • 2.5: Enzymes
        • 2.6: DNA and RNA
        • 2.7: DNA Replication, Transcription and Translation
        • 2.8: Cell Respiration
        • 2.9: Photosynthesis
      • 3: Genetics >
        • 3.1: Genes
        • 3.2: Chromosomes
        • 3.3: Meiosis
        • 3.4: Inheritance
        • 3.5: Genetic Modification and Biotechnology
      • 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2: Energy Flow
        • 4.3: Carbon Cycling
        • 4.4: Climate Change
      • 5: Evolution and Biodiversity >
        • 5.1: Evidence for Evolution
        • 5.2: Natural Selection
        • 5.3: Classification and Biodiversity
        • 5.4: Cladistics
      • 6: Human Physiology >
        • 6.1: Digestion and Absorption
        • 6.2: The Blood System
        • 6.3: Defense Against Infectious Disease
        • 6.4: Gas Exchange
        • 6.5: Neurons and Synapses
        • 6.6: Hormones, Homeostasis and Reproduction
    • Higher Level >
      • 7: Nucleic Acids >
        • 7.1: DNA Structure and Replication
        • 7.2: Transcription and Gene Expression
        • 7.3: Translation
      • 8: Metabolism, Cell Respiration & Photosynthesis >
        • 8.1: Metabolism
        • 8.2: Cell Respiration
        • 8.3: Photosynthesis
      • 9: Plant Biology >
        • 9.1: Transport in the Xylem of Plants
        • 9.2: Transport in the Phloem of Plants
        • 9.3: Growth in Plants
        • 9.4: Reproduction in Plants
      • 10: Genetics and Evolution >
        • 10.1: Meiosis
        • 10.2: Inheritance
        • 10.3: Gene Pools and Speciation
      • 11: Animal Physiology >
        • 11.1: Antibody Production and Vaccination
        • 11.2: Movement
        • 11.3: Kidney and Osmoregulation
        • 11.4: Sexual Reproduction
    • Options >
      • D: Human Physiology >
        • D.1: Human Nutrition
        • D.2: Digestion
        • D.3: Functions of the Liver
        • D.4: The Heart
        • D.5: Hormones and Metabolism
        • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Group 4 Project
    • External Exam
    • Internal Assessment >
      • Personal Engagement
      • Exploration
      • Analysis
      • Evaluation
      • Communication
    • Extended Essay
  • Investigation Skills
    • Lab Safety
    • Microscopy
    • Lab Drawings
    • Data Tables
    • Measurement
    • Statistics >
      • Descriptive Statistics >
        • Skew
        • Measures of Central Tendancy
        • Measures of Spread
        • Pearson Correlation
      • Inferential Statistics >
        • T-Test
        • ANOVA
        • Kruskal-Wallis
        • X2 Test for Independence
        • X2 Goodness of Fit
    • Graphing >
      • Graphing with Excel
      • Interpreting Error Bars
    • Error Analysis
  • Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • IB Bio Dance
      • Wood Duck Project
      • Invasive Crayfish Project
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes
      • Lab Practicals
    • Class Photos
    • Recommendations
    • Supplemental Reading
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Site Feedback
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
  • Summer Ecology Research

National Geographic Education

7/11/2018

 
Back in February, the Albert Einstein Fellows had the opportunity to explore how the National Geographic Society connect STEM and geographic literacy.  We spent an afternoon at the Society learning about their education initiatives and visiting the engineering imaging laboratory. We met with the lead engineer with National Geographic Remote Imaging team, the group that facilitates the building of unique imaging tools and equipment for the National Geographic Society.  Some of the equipment includes the dropcam, a camera that can film in some of the deepest regions of the world’s oceans, and the Crittercam, a camera attached to wild animals that can record video and audio as well as collect other data. The day of our visit they team had just finished testing of a camera case designed to withstand the immense heat of a raging wildfire.  It was SO COOL to see the science and engineering that is used to create the iconic images and videos that the National Geographic Society is known for producing.
Picture
The camera lab at the National Geographic Society
Picture
Remote controlled camera
Picture
Shark cam!
We also learned about the National Geographic Society education resources and opportunities for professional development. The National Geographic Society played a huge role in my trajectory as a teacher. I received a grant from the National Geographic Society for my first ever Earthwatch expedition in 2004.  On that expedition, I wrote a reflection that has served as my “touchstone” during my education career.  In a way, I have the National Geographic Society to thank for my 100% confidence that the statement that “those who can’t … teach” is a fallacy.   I can “do” science but I chose to teach.
Picture
The National Geographic education philosophy
Since that initial experience, I have taken students on an additional ten expeditions. While no long directly associated with Nat Geo, the Earthwatch expeditions my students and I participate in definitely mesh with the National Geographic Society’s missions of exploring and protecting our plant while inspiring new generations through education initiatives and resources.  Given impact and mission of the National Geographic Society, when the Einstein Fellows visited I was excited to learn of the educator certification program.   “The Educator Certification program equips educators with the resources and training needed to teach students about the world in innovative, interdisciplinary ways. Benefits of certification include professional recognition; connection to a community of like-minded educators; and access to resources, mentorship, and leadership opportunities with National Geographic. Through this program, educators will learn about the National Geographic mission, how to teach interdisciplinarily through various scales and perspectives, and the National Geographic Learning Framework—all while applying these ideas to their own work and collaborating with educators worldwide.”  ​
Picture
Learning about the National Geographic educator certification while at the Society last February
I immediately began work on my certification process.  First was participation in a virtual workshop where I learned about the National Geographic Learning Framework and the thousands of educational resources and opportunities available to educators.  Emphasis during “Phase 1” of the certification process was on the attitudes, skills and knowledge of the explorer mindset.

Phase 2 consisted of teaching two lessons that related to the Nat Geo Learning Framework and a teaching resource or lesson available through the Society.  How was I going to teach two lessons while I don’t have any students? No problem! In April I traveled with a group of kids from my school to Costa Rica for an Earthwatch expedition during which we assisted on a study of frugivory and seed dispersal.  The week with students enabled me to complete my Phase 2 lessons with no problem.

The final component, Phase 3, involved creating a capstone video to showcase one of the lessons from phase 2.  I was tasked with creating a video that tells the story of the lesson, the impact it had on the students and demonstrates my professional growth.  In all the other teaching videos I have created (i.e. National Board Certification and Presidential Award for Excellence) the videos were uncut and unedited.  For the capstone project however the video needed to attempt to capture an audience and tell a story (attributes that Nat Geo is quite known for). So, I spent quite a bit of time trying to edit together video clips and photographs for the final project.  Shout out to my husband Curtis for capturing some video of me, even if it’s obvious I’m looking above the camera! Oops!
I’ll find out if I met certification standards within 4-6 weeks.  In the meantime, I have really really enjoyed the process of learning more about the National Geographic Society education philosophy and capturing the story of our work in Costa Rica!
    Picture

    Author

    I’m Gretel von Bargen and I was an Einstein Fellow in the Department of Energy, Office of Science.  During my fellowship year (2017-2018) I worked within the Workforce Development for Teachers and Scientists (WDTS) office.  Aligned with the goals of the WDTS office, I am committed towards creating a sustained pipeline of skilled science, technology, engineering and math (STEM) workers and teachers. As a dedicated STEM educator, I work to develop my students understanding and appreciation for the nature of science and the natural world.  In addition to the important work I did related to the National Science Bowl, I had three goals for my Fellowship year.  First, I was looking to build relationships and connections between the scientific and education communities, aiming for increased opportunity for high school students to gain authentic experiences with practicing scientists.  Second, I wanted to deepen my understanding of the complexities of the national STEM teacher shortage, specifically exploring the role active classroom teachers play in communicating the joys and challenges of a STEM teaching career.  Third, I was looking to broaden my own scientific content knowledge so that students benefit from an added depth, breadth and interdisciplinary connections in future lessons. 

    Viewpoints are my own and not representative of the Fellowship Program or the agency in which I was placed.  ​​

    Archives

    July 2018
    June 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017

I give many of my IB Biology resources away, for the benefit of students and teachers around the world. 
If you've found the materials helpful, please consider making a contribution of any amount
to 
this Earthwatch Expedition Fund. 

​Did I forget something?  Know of a mistake? Have a suggestion?  Let me know by emailing me here.

Before using any of the files available on this site,
​please familiarize yourself with the 
Creative Commons Attribution License. 
​​​It prohibits the use of any material on this site for commercial  purposes of any kind.  ​


"When we try to pick out anything by itself, we find it hitched to everything else in the Universe." 
 John Muir,   1911
  • Syllabus
    • Core >
      • 1: Cell Biology >
        • 1.1: Introduction to Cells
        • 1.2: Ultrastructure of Cells
        • 1.3: Membrane Structure
        • 1.4: Membrane Transport
        • 1.5: The Origin of Cells
        • 1.6: Cell Division
      • 2: Molecular Biology >
        • 2.1: Molecules to Metabolism
        • 2.2: Water
        • 2.3: Carbohydrates and Lipids
        • 2.4: Proteins
        • 2.5: Enzymes
        • 2.6: DNA and RNA
        • 2.7: DNA Replication, Transcription and Translation
        • 2.8: Cell Respiration
        • 2.9: Photosynthesis
      • 3: Genetics >
        • 3.1: Genes
        • 3.2: Chromosomes
        • 3.3: Meiosis
        • 3.4: Inheritance
        • 3.5: Genetic Modification and Biotechnology
      • 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2: Energy Flow
        • 4.3: Carbon Cycling
        • 4.4: Climate Change
      • 5: Evolution and Biodiversity >
        • 5.1: Evidence for Evolution
        • 5.2: Natural Selection
        • 5.3: Classification and Biodiversity
        • 5.4: Cladistics
      • 6: Human Physiology >
        • 6.1: Digestion and Absorption
        • 6.2: The Blood System
        • 6.3: Defense Against Infectious Disease
        • 6.4: Gas Exchange
        • 6.5: Neurons and Synapses
        • 6.6: Hormones, Homeostasis and Reproduction
    • Higher Level >
      • 7: Nucleic Acids >
        • 7.1: DNA Structure and Replication
        • 7.2: Transcription and Gene Expression
        • 7.3: Translation
      • 8: Metabolism, Cell Respiration & Photosynthesis >
        • 8.1: Metabolism
        • 8.2: Cell Respiration
        • 8.3: Photosynthesis
      • 9: Plant Biology >
        • 9.1: Transport in the Xylem of Plants
        • 9.2: Transport in the Phloem of Plants
        • 9.3: Growth in Plants
        • 9.4: Reproduction in Plants
      • 10: Genetics and Evolution >
        • 10.1: Meiosis
        • 10.2: Inheritance
        • 10.3: Gene Pools and Speciation
      • 11: Animal Physiology >
        • 11.1: Antibody Production and Vaccination
        • 11.2: Movement
        • 11.3: Kidney and Osmoregulation
        • 11.4: Sexual Reproduction
    • Options >
      • D: Human Physiology >
        • D.1: Human Nutrition
        • D.2: Digestion
        • D.3: Functions of the Liver
        • D.4: The Heart
        • D.5: Hormones and Metabolism
        • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Group 4 Project
    • External Exam
    • Internal Assessment >
      • Personal Engagement
      • Exploration
      • Analysis
      • Evaluation
      • Communication
    • Extended Essay
  • Investigation Skills
    • Lab Safety
    • Microscopy
    • Lab Drawings
    • Data Tables
    • Measurement
    • Statistics >
      • Descriptive Statistics >
        • Skew
        • Measures of Central Tendancy
        • Measures of Spread
        • Pearson Correlation
      • Inferential Statistics >
        • T-Test
        • ANOVA
        • Kruskal-Wallis
        • X2 Test for Independence
        • X2 Goodness of Fit
    • Graphing >
      • Graphing with Excel
      • Interpreting Error Bars
    • Error Analysis
  • Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • IB Bio Dance
      • Wood Duck Project
      • Invasive Crayfish Project
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes
      • Lab Practicals
    • Class Photos
    • Recommendations
    • Supplemental Reading
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Site Feedback
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
  • Summer Ecology Research