BIOLOGY FOR LIFE
  • Syllabus
    • Core >
      • 1: Cell Biology >
        • 1.1: Introduction to Cells
        • 1.2: Ultrastructure of Cells
        • 1.3: Membrane Structure
        • 1.4: Membrane Transport
        • 1.5: The Origin of Cells
        • 1.6: Cell Division
      • 2: Molecular Biology >
        • 2.1: Molecules to Metabolism
        • 2.2: Water
        • 2.3: Carbohydrates and Lipids
        • 2.4: Proteins
        • 2.5: Enzymes
        • 2.6: DNA and RNA
        • 2.7: DNA Replication, Transcription and Translation
        • 2.8: Cell Respiration
        • 2.9: Photosynthesis
      • 3: Genetics >
        • 3.1: Genes
        • 3.2: Chromosomes
        • 3.3: Meiosis
        • 3.4: Inheritance
        • 3.5: Genetic Modification and Biotechnology
      • 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2: Energy Flow
        • 4.3: Carbon Cycling
        • 4.4: Climate Change
      • 5: Evolution and Biodiversity >
        • 5.1: Evidence for Evolution
        • 5.2: Natural Selection
        • 5.3: Classification and Biodiversity
        • 5.4: Cladistics
      • 6: Human Physiology >
        • 6.1: Digestion and Absorption
        • 6.2: The Blood System
        • 6.3: Defense Against Infectious Disease
        • 6.4: Gas Exchange
        • 6.5: Neurons and Synapses
        • 6.6: Hormones, Homeostasis and Reproduction
    • Higher Level >
      • 7: Nucleic Acids >
        • 7.1: DNA Structure and Replication
        • 7.2: Transcription and Gene Expression
        • 7.3: Translation
      • 8: Metabolism, Cell Respiration & Photosynthesis >
        • 8.1: Metabolism
        • 8.2: Cell Respiration
        • 8.3: Photosynthesis
      • 9: Plant Biology >
        • 9.1: Transport in the Xylem of Plants
        • 9.2: Transport in the Phloem of Plants
        • 9.3: Growth in Plants
        • 9.4: Reproduction in Plants
      • 10: Genetics and Evolution >
        • 10.1: Meiosis
        • 10.2: Inheritance
        • 10.3: Gene Pools and Speciation
      • 11: Animal Physiology >
        • 11.1: Antibody Production and Vaccination
        • 11.2: Movement
        • 11.3: Kidney and Osmoregulation
        • 11.4: Sexual Reproduction
    • Options >
      • D: Human Physiology >
        • D.1: Human Nutrition
        • D.2: Digestion
        • D.3: Functions of the Liver
        • D.4: The Heart
        • D.5: Hormones and Metabolism
        • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Group 4 Project
    • External Exam
    • Internal Assessment >
      • Personal Engagement
      • Exploration
      • Analysis
      • Evaluation
      • Communication
    • Extended Essay
  • Investigation Skills
    • Lab Safety
    • Microscopy
    • Lab Drawings
    • Data Tables
    • Measurement
    • Statistics >
      • Descriptive Statistics >
        • Skew
        • Measures of Central Tendancy
        • Measures of Spread
        • Pearson Correlation
      • Inferential Statistics >
        • T-Test
        • ANOVA
        • Kruskal-Wallis
        • X2 Test for Independence
        • X2 Goodness of Fit
    • Graphing >
      • Graphing with Excel
      • Interpreting Error Bars
    • Error Analysis
  • Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • IB Bio Dance
      • Wood Duck Project
      • Invasive Crayfish Project
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes
      • Lab Practicals
    • Class Photos
    • Recommendations
    • Supplemental Reading
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Site Feedback
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
  • Summer Ecology Research

What is the Office of Science?

3/11/2018

 
I am serving my year as an Einstein Fellow with in the Office of Science in the Department of Energy.  As quoted from the SC website, the Office manages “Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics."  In addition, the Office of Science manages and supports additional programs and activities, including: the Workforce Development for Teachers and Scientists program (the group in which I am placed), the DOE Small Business Innovation Research Small Business Technology Transfer programs, and the Office of Project Assessment.  

The Office of Science is the largest funder of physical science research in the United States.  As a biologist who has a comfort level that spans from the atomic to ecosystem levels of organization, the discoveries of the Fusion Energy Sciences, High Energy Physics and Nuclear Physics offices actually kind of blow my mind!  I've learned a lot, and readily admit that I needed to Google search to help me comprehend some of the terms I've been learning and how they connect to the parts of matter that I recognize! I am definitely thinking of my IB physics teacher friend/colleague and how she would love to know what I am doing right now! 

The Office of Science is also the steward of 10 of the 17 DOE laboratories; these 10 laboratories provide essential support to the missions of the Office of Science programs. One of the benefits of being an Einstein Fellow placed in the Office of Science is the ability to visit some of the national laboratories.  I have been to Brookhaven National Lab (on Long Island, NY) and will soon be visiting Pacific Northwest National Lab (in Richland, WA).  I would like to get to two more labs before my fellowship is complete.

Brookhaven National Lab has about 3000 employees, 1100 of which are scientists.  During my visit to the lab I was able to meet with their incredible team of five educators who work with students (elementary through graduate school).  The team serves about 30K K-12 kids per year at their impressive science learning center.  When I asked how they would like to grow their program, a wish was for more public, citizen engagement in their science. 
Carrick and Curtis exploring the Brookhaven Science Learning Center
As a high school teacher, I was curious about what skills and attributes they most desire in undergraduate and graduate students applying for internship positions at the lab.  The list of descriptors included:
  • potential,
  • being a team player,
  • solid knowledge of math, science, and computing,
  • motivation,
  • curiosity, and 
  • the ability to communicate passions with authentic enthusiasm

A highlight of my visit to Brookhaven was a visit to their National Synchrotron Light Source-II.  The light source generates a intense X-ray, infrared and ultraviolet beams that are able to resolve images down to the nanometer scale.  There are currently 19 running beam linesI had a wonderful discussion with one of their staff scientists about how the light source functions and its uses in the materials and biological sciences. As a result of my visit, I have a deepened understanding of the Nature of Science and the magnitude of effort required to learn about things at orders of magnitude beyond the visible. ​
Picture
Aerial view of the NSLS-II By Zxcvbnm789 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64831880
A synchrotron  is a ring of electrons moving very, very fast (near the speed of light). Because of physics that I do not really understand, the circulating electrons emit photons which can be "peeled off" the ring, traveling at a wavelength of interest, into a beam line.  Beam lines are the spokes that run tangent to the accelerator ring and contain a slew of impressive instrumentation that can focus the photon onto a sample for imaging.  
Picture
https://blogs.umass.edu/baskin/2017/02/18/feb-12th-x-ray-visions/
The NSLS-II currently has 19 functioning beam lines, each of which takes ​5-6 years to get running.  Because they are such massive investments of time and money there are just four synchrotrons in the USA.  The one I visited has the brightest beam in the middle energy range and is primarily used to the study of materials science, such as the live functioning of batteries, semi- and superconductors. 
Picture
Image of a beam line coming off the electron accelerator at the NSLS-II.
Picture
Carrick and I outside the NSLS-II at Brookhaven National Lab
    Picture

    Author

    I’m Gretel von Bargen and I was an Einstein Fellow in the Department of Energy, Office of Science.  During my fellowship year (2017-2018) I worked within the Workforce Development for Teachers and Scientists (WDTS) office.  Aligned with the goals of the WDTS office, I am committed towards creating a sustained pipeline of skilled science, technology, engineering and math (STEM) workers and teachers. As a dedicated STEM educator, I work to develop my students understanding and appreciation for the nature of science and the natural world.  In addition to the important work I did related to the National Science Bowl, I had three goals for my Fellowship year.  First, I was looking to build relationships and connections between the scientific and education communities, aiming for increased opportunity for high school students to gain authentic experiences with practicing scientists.  Second, I wanted to deepen my understanding of the complexities of the national STEM teacher shortage, specifically exploring the role active classroom teachers play in communicating the joys and challenges of a STEM teaching career.  Third, I was looking to broaden my own scientific content knowledge so that students benefit from an added depth, breadth and interdisciplinary connections in future lessons. 

    Viewpoints are my own and not representative of the Fellowship Program or the agency in which I was placed.  ​​

    Archives

    July 2018
    June 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017

I give many of my IB Biology resources away, for the benefit of students and teachers around the world. 
If you've found the materials helpful, please consider making a contribution of any amount
to 
this Earthwatch Expedition Fund. 

​Did I forget something?  Know of a mistake? Have a suggestion?  Let me know by emailing me here.

Before using any of the files available on this site,
​please familiarize yourself with the 
Creative Commons Attribution License. 
​​​It prohibits the use of any material on this site for commercial  purposes of any kind.  ​


"When we try to pick out anything by itself, we find it hitched to everything else in the Universe." 
 John Muir,   1911
  • Syllabus
    • Core >
      • 1: Cell Biology >
        • 1.1: Introduction to Cells
        • 1.2: Ultrastructure of Cells
        • 1.3: Membrane Structure
        • 1.4: Membrane Transport
        • 1.5: The Origin of Cells
        • 1.6: Cell Division
      • 2: Molecular Biology >
        • 2.1: Molecules to Metabolism
        • 2.2: Water
        • 2.3: Carbohydrates and Lipids
        • 2.4: Proteins
        • 2.5: Enzymes
        • 2.6: DNA and RNA
        • 2.7: DNA Replication, Transcription and Translation
        • 2.8: Cell Respiration
        • 2.9: Photosynthesis
      • 3: Genetics >
        • 3.1: Genes
        • 3.2: Chromosomes
        • 3.3: Meiosis
        • 3.4: Inheritance
        • 3.5: Genetic Modification and Biotechnology
      • 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2: Energy Flow
        • 4.3: Carbon Cycling
        • 4.4: Climate Change
      • 5: Evolution and Biodiversity >
        • 5.1: Evidence for Evolution
        • 5.2: Natural Selection
        • 5.3: Classification and Biodiversity
        • 5.4: Cladistics
      • 6: Human Physiology >
        • 6.1: Digestion and Absorption
        • 6.2: The Blood System
        • 6.3: Defense Against Infectious Disease
        • 6.4: Gas Exchange
        • 6.5: Neurons and Synapses
        • 6.6: Hormones, Homeostasis and Reproduction
    • Higher Level >
      • 7: Nucleic Acids >
        • 7.1: DNA Structure and Replication
        • 7.2: Transcription and Gene Expression
        • 7.3: Translation
      • 8: Metabolism, Cell Respiration & Photosynthesis >
        • 8.1: Metabolism
        • 8.2: Cell Respiration
        • 8.3: Photosynthesis
      • 9: Plant Biology >
        • 9.1: Transport in the Xylem of Plants
        • 9.2: Transport in the Phloem of Plants
        • 9.3: Growth in Plants
        • 9.4: Reproduction in Plants
      • 10: Genetics and Evolution >
        • 10.1: Meiosis
        • 10.2: Inheritance
        • 10.3: Gene Pools and Speciation
      • 11: Animal Physiology >
        • 11.1: Antibody Production and Vaccination
        • 11.2: Movement
        • 11.3: Kidney and Osmoregulation
        • 11.4: Sexual Reproduction
    • Options >
      • D: Human Physiology >
        • D.1: Human Nutrition
        • D.2: Digestion
        • D.3: Functions of the Liver
        • D.4: The Heart
        • D.5: Hormones and Metabolism
        • D.6: Transport of Respiratory Gases
  • IB Requirements
    • Learner Profile
    • Group 4 Project
    • External Exam
    • Internal Assessment >
      • Personal Engagement
      • Exploration
      • Analysis
      • Evaluation
      • Communication
    • Extended Essay
  • Investigation Skills
    • Lab Safety
    • Microscopy
    • Lab Drawings
    • Data Tables
    • Measurement
    • Statistics >
      • Descriptive Statistics >
        • Skew
        • Measures of Central Tendancy
        • Measures of Spread
        • Pearson Correlation
      • Inferential Statistics >
        • T-Test
        • ANOVA
        • Kruskal-Wallis
        • X2 Test for Independence
        • X2 Goodness of Fit
    • Graphing >
      • Graphing with Excel
      • Interpreting Error Bars
    • Error Analysis
  • Course Info
    • Above & Beyond >
      • Biology Club
      • Pumpkin Carving
      • Scavenger Hunt
      • Science News
      • IB Bio Dance
      • Wood Duck Project
      • Invasive Crayfish Project
    • Assessment >
      • Class Grading IB Bio I
      • Class Grading IB Bio II
      • Daily Quizzes
      • Lab Practicals
    • Class Photos
    • Recommendations
    • Supplemental Reading
  • Contact
  • About
    • Philosophy
    • Resume
    • Reflection
    • Site Feedback
    • Favorite Quotes
    • AEF Blog
  • Expeditions
    • Bahamas (2009)
    • Trinidad (2010)
    • Trinidad (2011)
    • Ecuador (2012)
    • Trinidad (2013)
    • Peru (2014)
    • Bahamas (2015)
    • Peru (2016)
    • Costa Rica (2017)
    • Costa Rica (2018)
    • Arizona (2022)
    • Florida (2023)
  • Summer Ecology Research